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ABSTRACT

Large-Scale Non-Linear Dynamic Optimization

for Combining Applications of Optimal

Scheduling and Control

Logan Daniel Beal

Department of Chemical Engineering, BYU

Doctor of Philosophy

Optimization has enabled automated applications in chemical manufacturing such as ad-

vanced control and scheduling. These applications have demonstrated enormous benefit over the

last few decades and continue to be researched and refined. However, these applications have

been developed separately with uncoordinated objectives. This dissertation investigates the unifi-

cation of scheduling and control optimization schemes. The current practice is compared to early-

concept, light integrations, and deeper integrations. This quantitative comparison of economic

impacts encourages further investigation and tighter integration.

A novel approach combines scheduling and control into a single application that can be

used online. This approach implements the discrete-time paradigm from the scheduling com-

munity, which matches the approach of the control community. The application is restricted to

quadratic form, and is intended as a replacement for systems with linear control. A novel ap-

proach to linear time-scaling is introduced to demonstrate the value of including scaled production

rates, even with simplified equation forms. The approach successfully demonstrates significant

benefit.

Finally, the modeling constraints are lifted from the discrete-time approach. Time depen-

dent constraints and parameters (like time-of-day energy pricing) are introduced, enabled by the

discrete-time approach, and demonstrate even greater economic value. The more difficult problem

calls for further exploration into the relaxation of integer variables and initialization techniques for

faster, more reliable solutions. These applications are also capable of replacing both scheduling

and control simultaneously.

A generic CSTR application is used throughout as a case study on which the integrated

optimization schemes are implemented. CSTRs are a common model for applications in most

chemical engineering industries, from food and beverage, to petroleum and pharmaceuticals. In

the included case study results, segregated control and scheduling schemes are shown to be 30+%

less profitable than fully unified approaches during operational periods around severe disturbances.

Further, inclusion of time-dependent parameters and constraints improved the open-loop profitabil-

ity by an additional 13%.

Keywords: optimization, advanced control, scheduling, nonlinear programming, model predictive

control



www.manaraa.com

CONTENTS

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Combining Scheduling and Control . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Modeling Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Dynamic Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Differential Equations in Optimization . . . . . . . . . . . . . . . . . . . . 8

1.3.3 Available Software Packages . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Non-Linear Programming Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4.1 Basic Interior Point Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.2 Basic Active Set Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.3 Globalization and Line-Search Methods . . . . . . . . . . . . . . . . . . . 21

1.4.4 Recent Advancements in Nonlinear Programming . . . . . . . . . . . . . . 24

1.5 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.6 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.7 Combining Scheduling and Control . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.8 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.9 Novel Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Chapter 2 Economic Benefit from Progressive Integration of Scheduling and Con-

trol for Continuous Chemical Processes . . . . . . . . . . . . . . . . . . . 31

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.1 Economic Benefit from Integrated Scheduling and Control . . . . . . . . . 31

2.1.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1.3 Purpose of this Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 Phases of Progressive Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.1 Phase 1: Fully Segregated Scheduling and Control . . . . . . . . . . . . . 37

2.2.2 Phase 2: Reactive Closed-loop Segregated Scheduling and Control . . . . . 38

2.2.3 Phase 3: Open-loop Integrated Scheduling and Control . . . . . . . . . . . 38

2.2.4 Phase 4: Closed-loop Integrated Scheduling and Control Responsive to

Market Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.5 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3 Case Study Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3.1 Process Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3.2 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4.1 Scenario A: Process Disturbance . . . . . . . . . . . . . . . . . . . . . . . 49

2.4.2 Scenario B: Market update containing demand fluctuation . . . . . . . . . 49

iii



www.manaraa.com

2.4.3 Scenario C: Market update containing new product selling prices . . . . . . 51

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Chapter 3 Combined Model Predictive Control and Scheduling with Dominant Time

Constant Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Time-Scaling with First-Order Systems . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Selective Time-Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Scheduling and Control Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.1 MPCC Steps for Product Pricing . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.2 Dynamic Cyclic Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4.3 Acceptable Range of Production Quantity . . . . . . . . . . . . . . . . . . 68

3.5 Application: Continuously Stirred Tank Reactor . . . . . . . . . . . . . . . . . . . 69

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Chapter 4 Integrated Scheduling and Control in Discrete-time with Dynamic Pa-

rameters and Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1.1 Economic Model Predictive Control and Dynamic Real Time Optimization 78

4.1.2 Integrated Scheduling and Control and Computational Capacity . . . . . . 78

4.1.3 Demand Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Problem Formulation in Discrete-time . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.1 Linking Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3 Strategies for Computational Tractability . . . . . . . . . . . . . . . . . . . . . . . 89

4.3.1 Continuous-time Scheduling Initialization . . . . . . . . . . . . . . . . . . 90

4.4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4.1 Closed-loop Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5.1 Case 1: Static Pricing and Cooling Constraints . . . . . . . . . . . . . . . 101

4.5.2 Case 2: Static Pricing, Diurnal Cooling Constraint Function . . . . . . . . 103

4.5.3 Case 3: Static Cooling Constraint, Diurnal Pricing Function . . . . . . . . 104

4.5.4 Case 4: Diurnal Pricing and Cooling Constraint Functions . . . . . . . . . 105

4.5.5 GEKKO Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.5.6 Closed-loop Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.5.7 Summarized Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Chapter 5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.1 Economic Benefits of Combining Scheduling and Control . . . . . . . . . . . . . . 111

5.2 Novel Scheduling and Control Paradigm . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.1 Novel Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3.1 Solver Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

iv



www.manaraa.com

Appendix A Combined Scheduling and Control Example . . . . . . . . . . . . . . . . . 143

Appendix B Feedback Linearization Estimation: Derivation . . . . . . . . . . . . . . . 146

v



www.manaraa.com

LIST OF TABLES

2.1 Economic Benefit of Integrated Scheduling and Control (ISC) Over Segregated Schedul-

ing and Control (SSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Works Considering Reactive ISC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Product Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4 Transition Time Table (τss) * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5 Initial Transitions (τθ ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.6 Reactor Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.7 Product Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.8 Scenario Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.9 Results: Scenario A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.10 Results: Scenario B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.11 Results: Scenario C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1 Reactor Initial Conditions and Parameter Values . . . . . . . . . . . . . . . . . . . . . 71

3.2 Product Summary with Demand and Price . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1 Reactor Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2 Product Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3 Computational Requirements: Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.4 Economic Summary: Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.5 Economic Summary: Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.6 Economic Summary: Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.7 Computational Requirements: Case 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.8 Economic Summary: Case 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.9 Computational Requirements: GEKKO . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.10 Profit Results: GEKKO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.11 Closed-Loop Time Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.12 Initialization Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.13 Case Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.1 30x Improvement in Iteration Count with Halley’s Method . . . . . . . . . . . . . . . 117

vi



www.manaraa.com

LIST OF FIGURES

1.1 The interaction of tools in optimization problems. . . . . . . . . . . . . . . . . . . . . 2

1.2 Interactions and data flow among optimization applications. . . . . . . . . . . . . . . . 3

1.3 Time scales of manufacturing optimization applications. . . . . . . . . . . . . . . . . 4

2.1 Phase 1: Open-loop scheduling determined once per day with no consideration of

process dynamics. Closed-loop control implemented to follow the schedule. . . . . . . 38

2.2 Phase 2: Dual-loop segregated scheduling and control. Scheduling is recalculated

reactively in the presence of process disturbances above a threshold or updated market

conditions. Closed-loop control implements the schedule in the absence of disturbances. 39

2.3 Phase 3: Open-loop scheduling determined once per day with consideration of process

dynamics and control structure in the form of grade transition information. Closed-

loop control implemented to follow the schedule. . . . . . . . . . . . . . . . . . . . . 39

2.4 Phase 4: Closed-loop combined scheduling and control responsive to both process

disturbances and updated market information. . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Scenario A: Process disturbance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.6 Scenario B: Market update (demand disturbance). . . . . . . . . . . . . . . . . . . . . 53

2.7 Scenario C: Market update (price disturbance). . . . . . . . . . . . . . . . . . . . . . 54

3.1 Performance degradation of MPC with model mismatch. . . . . . . . . . . . . . . . . 59

3.2 Contour plot of performance degradation of MPC. An objective below 7 is acceptable,

between 7-30 is marginal, and above 30 (red line) is poor performance. . . . . . . . . . 60

3.3 Time-scaling of a 7th order system when the feed rate is reduced to half. . . . . . . . . 62

3.4 Individual MPCC step functions are combined to create a continuous differentiable

expression of switching conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5 The control and scheduling optimization are combined to determine optimal MV move-

ment along with the optimal order and quantity of production for each grade. . . . . . . 65

3.6 Optimized schedule with periodic condition, intermediate production targets, and final

production targets. The schedule and control actions adjust to meet constraints and

maximize profit (product C). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.7 Diagram of the well-mixed and liquid-full CSTR. The A⇒ B reaction is exothermic

and controlled by a cooling jacket fluid. . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.8 Step tests in the jacket cooling and linear model regression of the step response. . . . . 71

3.9 Combined control and schedule optimization results. . . . . . . . . . . . . . . . . . . 73

3.10 Profit function and individual step functions for each product. . . . . . . . . . . . . . . 75

4.1 A generic linking function between the continuous process specification variable x and

the binary scheduling variable for the associated product b. . . . . . . . . . . . . . . . 83

4.2 Variables are discretized over a horizon onto finite elements by orthogonal collocation. 84

4.3 A sample plot of Function 4.9 with increasingly large h, beginning with a gentle slope

for clean, far-reaching derivatives, progressing towards a strict binary step function. . . 87

4.4 A sample plot of the sigmoid function with increasingly large k, beginning with a

gentle slope for clean, far-reaching derivatives, progressing towards a strict binary step

function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

vii



www.manaraa.com

4.5 A comparison of different linking functions at various horizon lengths. The figures

show that Eq. 4.9 (PB or “pseudo-binary”) consistently returns the best schedule,

while Eq. 4.7 (hard) consistently yields the fastest solution. . . . . . . . . . . . . . . . 89

4.6 Continuous-time scheduling divides the future horizon into time slots that consist of a

transition period τi′i (where product i′ is made in slot s - 1 and product i is made in slot

s) followed by the production period for product i. . . . . . . . . . . . . . . . . . . . . 90

4.7 Stabilized linearized system block diagram. . . . . . . . . . . . . . . . . . . . . . . . 94

4.8 Plots of maximum effective cooling constraint and time-of-day pricing over 48 hours. . 99

4.9 Case 1 results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.10 Case 2: Initialized by continuous-time scheduling with NMPC-estimated transition

times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.11 Case 3: Initialized by continuous-time scheduling with NMPC-estimated transition

times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.12 Case 4 results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.1 Solver comparison on benchmark set showing benefit of combining IP (BPOPT) and

AS (APOPT) methods [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

B.1 Feedback linearized system block diagram. . . . . . . . . . . . . . . . . . . . . . . . 148

B.2 Actual transition times compared to the log function approximation. The approxima-

tion works exceptionally well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

viii



www.manaraa.com

NOMENCLATURE

ML Machine Learning

ANN Artificial Neural Networks

RTO Real-Time Optimization

DRTO Dynamic Real-Time Optimization

MDO Multi-Disciplinary Optimization

LP Linear Programming

QP Quadratic Programming

NLP Non-Linear Programming

MILP Mixed-Integer Linear Programming

MINLP Mixed-Integer Non-Linear Programming

QPQC Quadratic Programming with Quadratic Constraints

AML Algebraic Modeling Language

AD Automatic (or Algorithmic) Differentiation

DAE Differential and Algebraic Equations

ODE Ordinary Differential Equations

PDE Partial Differential Equations

MPC Model Predictive Control

NMPC Nonlinear Model Predictive Control

EMPC Economic Model Predictive Control

MHE Moving Horizon Estimation

SQP Sequential Quadratic Programming

KKT Karush-Kuhn-Tucker

BFGS Broyden–Fletcher–Goldfarb–Shanno

CSTR Continuously Stirred Tank Reactor

DO Dynamic Optimization

MIDO Mixed Integer Dynamic Optimization

MPEC Mathematical Programming with Equilibrium Constraints

MPCC Mathematical Programming with Complementarity Constraints

MV Manipulated Variable

CV Controlled Variable

SC Scheduling and Control

DR Demand Response

SISO Single-Input Single-Output

LQR Linear Quadratic Regulator

IP Interior Point

AS Active Set

SOC Second-Order Correction

FBR Fluidized Bed Reactor

ASU Air Separation Unit

PFR Plug Flow Reactor

ix



www.manaraa.com

CHAPTER 1. INTRODUCTION

1.1 Introduction

Computational power has increased dramatically in recent decades. In addition, there are

new architectures for specialized tasks and distributed computing for parallelization. Computa-

tional power and architectures have expanded the capabilities of technology to new levels of au-

tomation and intelligence with rapidly expanding artificial intelligence capabilities and computer-

assisted decision processing [2]. These advancements in technology have been accompanied by

a growth in the types of mathematical problems that applications solve. Lately, machine learn-

ing (ML) has become the must-have technology across all industries, largely inspired by the

recent public successes of new artificial neural network (ANN) applications. Increased compu-

tational resources have provoked the optimization community to expect more from computers.

Examples such as extending Real-Time Optimization (RTO) to Dynamic Real-Time Optimiza-

tion (DRTO) [3], energy-grid optimization [4], Multidisciplinary Design Optimization (MDO) [5],

enterprise-wide optimization [6], and optimization under uncertainty [7] present much harder prob-

lems that yield more valuable solutions.

A subset of optimization that is particularly relevant to chemical engineering is termed

dynamic optimization. This field encompasses all problems with time dependence. Applications

have ranged from chemical production planning [8], energy storage systems [9,10], polymer grade

transitions [3], cryogenic air separation [11], unmanned aerial vehicle path planning [12], and

dynamic process model parameter estimation in the chemical industry [13].

As the capacity to solve increasingly larger problems improves, researchers continue to

find more applications to optimize. Rather than simplifying and approximating problems to linear

programming (LP) or quadratic programming (QP) for a solution that is “good enough”, practi-

tioners have triggered a new era of larger-scale and combined optimization. Areas that had been

previously dominated by heuristics can now be modeled and optimized. Problems that had been

1
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optimized through a series of simplifications and divisions to layers can now be tackled more di-

rectly. One such field that is relevant to chemical engineering manufacturing is the desegregation

of heretofore separate scheduling and control optimizations.

Section 1.2 introduces the field of combining scheduling and control. The principle accom-

panying technologies that enable these advancements in large-scale optimization, such as combin-

ing scheduling and control, are algebraic modeling languages (AML) and solvers. AMLs and

solvers each take the problem posed and transform it to a new paradigm to facilitate computational

solutions, as shown in Figure 1.1. Understanding these technologies enables more complete and

robust approaches to solving novel, difficult optimization problems. Section 1.3 addresses mod-

eling frameworks that simplify the solver-engineer interface, enabling simpler, more robust prob-

lem solving. Section 1.4 explains the approach and core algorithms for state-of-the-art nonlinear

solvers. Sections 1.5-1.7 then revisit combining scheduling and control and set up the remainder

of the dissertation.

Problem 

Formulation
AML Solver Solution

Figure 1.1: The interaction of tools in optimization problems.

1.2 Combining Scheduling and Control

Production scheduling and advanced control are terms which describe efforts to optimize

chemical manufacturing operations. Production scheduling seeks to optimally pair production

resources with production demands to maximize operational profit. Advanced controls seek to

optimally control a chemical process to observe environmental and safety constraints and to drive

operations to the most economical conditions. Model predictive advanced controls use process

models to make predictions into a future horizon based on possible control moves to determine

2
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the optimal sequence of control moves to meet an objective, such as reaching an operational set

point. In a multi-product continuous chemical process, steady-state operational set points or de-

sired operational conditions over a future time horizon are determined by the production schedule,

determining at which times, in what amounts, and in which sequence certain products should be

produced.

Figure 1.2 illustrates the current industrial implementation of these applications. The

scheduler considers economic information, creates an optimal schedule, and passes ordered prod-

uct setpoints to the controller. The controller has no knowledge of economics and cannot com-

municate back to the scheduler. However, unlike the scheduler, the controller has knowledge of

system dynamics and receives feedback from the physical process.

Economic 
Information

Scheduler Controller Process

Measurements

Control Moves

Set Points

Figure 1.2: Interactions and data flow among optimization applications.

As scheduling and advanced control are closely interrelated, both seeking to optimize

chemical manufacturing efficiency over future time horizons, their integration has been the subject

of significant recent investigation. Multiple review articles have been published on the integration

of scheduling and control [14–17]. As schedules are informed of process dynamics as dictated by

control structure and process nonlinearities, schedules produced become more aligned with actual

process operations and schedule efficacy improves [18]. Conversely, when scheduling and ad-

vanced control are separated, coordination of closed-loop responses to process disturbances is lost,

unrealistic set points may be passed from scheduling to advanced controls, and advanced control

may seek to drive the process to sub-optimal operating conditions due to a lack of communica-

tion [16, 18, 19]. In the presence of a process disturbance, for example, advanced controls may

3
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attempt to return to a set point determined prior to the disturbance, whereas a recalculation of the

schedule from the measured disturbed state, with knowledge of process dynamics and controller

behavior, may show a different schedule and set point to be most economical [18, 20].

One setback to the integration of scheduling and control is computational difficulty. Ad-

vanced controls, particularly model predictive controls, utilize dynamic process models in dynamic

optimization problems, forming LP or nonlinear programming (NLP) optimization problems (de-

pending on the type of model used) with high detail over short horizons. Scheduling involves

discrete or binary decisions, such as assigning particular products to production at given times,

over long horizons. This gives rise to mixed-integer programming problems for scheduling. When

scheduling and control are combined, the computational burden of mixed-integer programming is

combined with the LP or NLP dynamic optimization problems. This further requires blending the

dynamics typically limited to the short horizons of control, with the long time scales of scheduling,

as shown in Figure 1.3. Additionally, dynamic optimization control problems are not required to be

solved only once, as in an iteration of advanced on-line control, but for each grade transition during

a production schedule. The integrated scheduling and control (ISC) problem has been shown to be

computationally difficult, and much research has been invested in decomposition and reduction of

computational burden for the problem [21–25].

Month Week Day Hour Minute Second

Scheduler  

RTO

Controller

Figure 1.3: Time scales of manufacturing optimization applications.

Reduction of the computational burden of integrated scheduling and control is especially

important for enabling on-line implementations. It has been shown repeatedly in simulation that
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closed-loop on-line implementations of integrated scheduling and control are critical to recalculat-

ing optimal scheduling and control when faced with process disturbances [18, 20]. Additionally,

it has been demonstrated that on-line closed-loop integrated scheduling and control is vital to

optimally responding to variable market conditions, including demand fluctuations and price fluc-

tuations [18, 26, 27]. As mentioned in review articles on integrated scheduling and control, a key

motivator for integration is the reduced time-scale at which market conditions fluctuate [14,15]. A

reduced time-scale for market fluctuations implies that the time-scale at which the economically

optimal schedule and associated optimal control profile fluctuates is likewise reduced. Thus, on-

line recalculation to respond to market condition updates is critical to integrated scheduling and

control, and computational burden reduction to enable such implementation is a salient topic for

researchers.

On-line responsiveness to volatile market conditions can improve process economics by

updating or changing the existing schedule [18]. The majority of integrated scheduling and con-

trol formulations have used cyclic schedules [20–24, 28–36]. However, it has been suggested that

a dynamic cyclic schedule may improve process economics [37]. Beal et al. suggest that a dy-

namic cyclic schedule can increase the flexibility of scheduling beyond the rigidity of a cyclic

product grade wheel. A dynamic cyclic schedule can dynamically change the sequence and dura-

tion of production of products on the grade wheel based on process disturbances, sudden surges

in demand for specific products, or time-dependent constraints such as operator availability for

equipment handling. Economic benefit from dynamic cyclic scheduling has been demonstrated in

previous work [18, 20]. Recent developments in integrated scheduling and control with discrete

representations of time do away with the idea of a cyclic schedule as the schedule is determined

as a sum total of the binary production variables at each discrete point in time during a prediction

horizon [38, 39]. In these works, the number of products manufactured, the selection of manufac-

tured products, sequence, and timing are all solved simultaneously with process dynamic models,

resulting in a computationally heavy formulation. Evidence of benefit from noncyclic scheduling

has also been demonstrated in other fields, such as cluster-tool robot scheduling for semiconductor

fabrication [40–45].
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1.3 Modeling Tools

Algebraic modeling languages (AML) facilitate the interface between advanced solvers

and human users. High-end gradient-based solvers require extensive information about the prob-

lem, including variable bounds, constraint functions and bounds, objective functions, and first and

second derivatives of the functions, all in consistent array format. AMLs simplify the process by

allowing the model to be written in a simple, intuitive format. The modeling language accepts a

model (constraints) and objective to optimize. The AML handles bindings to the solver binary,

maintains the required formatting of the solvers, and exposes the necessary functions. The nec-

essary function calls include constraint residuals, objective function values, and derivatives. Most

modern modeling languages leverage automatic differentiation (AD) [46] to facilitate exact gradi-

ents without explicit derivative definition by the user.

In general, an AML is designed to solve a problem in the following form:

minimize
x

f (x)

subject to c(x) = 0

d(x)≤ 0

xL ≤ x≤ xU

(1.1)

where x is a vector of the decision variables, with upper and lower bounds xU and xL,

respectively. xL ∈ (−∞,∞)n and xU ∈ (−∞,∞)n with xi
L ≤ xi

U . The objective function f : Rn→ R

and the equality constraints c :Rn→R
m, where m≤ n, are twice continuously differentiable.

1.3.1 Dynamic Optimization

Dynamic optimization is a unique subset of optimization algorithms that pertain to systems

with time-based differential equations. Dynamic optimization problems extend algebraic problems

of the form in Equation 1.1 to include the possible addition of the differentials dx
dt

in the objective

function and constraints, as shown in Equation 1.2.
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minimize
x

f

(

x,
dx

dt

)

subject to c

(

x,
dx

dt

)

= 0

d

(

x,
dx

dt

)

≤ 0

xL ≤ x≤ xU

(1.2)

Differential algebraic equation (DAE) systems are solved by discretizing the differential

equations to a system of algebraic equations to achieve a numerical solution. Some modeling

languages are capable of natively handling DAEs by providing built-in discretization schemes.

The DAEs are typically solved numerically and there are a number of available discretization

approaches. Historically, these problems were first solved with a direct shooting method [47].

Direct shooting methods are still used and are best suited for stable systems with few degrees

of freedom. Direct shooting methods eventually led to the development of multiple shooting,

which provided benefits such as parallelization and stability [48]. For very large problems with

multiples degrees of freedom, “direct transcription” (also known as “orthogonal collocation on

finite elements”) is the state-of-the-art method [49]. Some fields have developed other unique

approaches, such as pseudospectral optimal control methods [50].

Dynamic optimization problems introduce an additional set of challenges. Many of these

challenges are consistent with those of other forms of ordinary differential equation (ODE) and

partial differential equation (PDE) systems; only some challenges are unique to discretization in

time. These challenges include handling stiff systems, unstable systems, numerical versus analyt-

ical solution mismatch, scaling issues (especially with increased discretization), the number and

location in the horizon of discretization points, and the optimal horizon length. Some of these

challenges, such as handling stiff systems, can be addressed with the appropriate discretization

scheme. Other challenges, such as the necessary precision of the solution and the location of dis-

cretizations of state variables, are better handled by a knowledgeable practitioner to avoid excessive

computation.

Popular practical implementations of dynamic optimization include model predictive con-

trol (MPC) [51] (along with its nonlinear variation NMPC [52] and the economic objective alter-
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native EMPC [53]), moving horizon estimation (MHE) [54] and dynamic real-time optimization

(DRTO) [55]. Each of these problems is a special case of Equation 1.2 with a specific objective

function. For example, in MPC, the objective is to minimize the difference between the controlled

variable set point and model predictions, as shown in Equation 1.3.

min
x

∥

∥x− xsp

∥

∥ (1.3)

where x is a state variable and xsp is the desired set point or target condition for that state. The

objective is typically a 1-norm, 2-norm, or squared error. EMPC modifies MPC by maximizing

profit rather than minimizing error to a set point, but uses the same dynamic process model, as

shown in Equation 1.4.

max
x

Profit (1.4)

MHE adjusts model parameters to minimize the difference between measured variable values

(xmeas) and model predictions (x), as shown in Equation 1.5.

min
x
‖x− xmeas‖ (1.5)

1.3.2 Differential Equations in Optimization

Including differential equations is problems solved by optimizers designed to work with

only algebraic contraints presents a unique challenge. There are two main approaches to this issue:

sequential and simultaneous techniques.

Sequential

Sequential methods separate the problem in Equation 1.2 into the standard algebraic opti-

mization routine (Equation 1.1) and a separate differential equation solver, where each problem is

solved sequentially. This method is popular in fields where the solution of differential equations

is extremely difficult. By separating the problems, the simulator can be fine-tuned, or wrapped in

a “black box.” Since the sequential approach is less reliable in unstable or ill-conditioned prob-
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lems, it is often adapted to a “multiple-shooting” approach to improve performance. One benefit

of the sequential approach is a guaranteed feasible solution of the differential equations, even if

the optimizer fails to find an optimum.

Simultaneous

The simultaneous approach, or direct transcription, minimizes the objective function and

resolves all constraints (including the discretized differential equations) simultaneously in the

large-scale and sparse solvers by transforming the problem to algebraic form (see Equation 1.6).

Thus, if the solver terminates without reaching optimality, it’s likely that the equations are not

satisfied and the dynamics of the infeasible solution are incorrect—yielding the solution worthless

rather than just suboptimal. However, since simultaneous approaches do not waste time accurately

simulating dynamics that are thrown away in intermediary iterations, this approach tends to be

faster for large problems with many degrees of freedom [56]. A common discretization scheme

for this approach is orthogonal collocation on finite elements. Orthogonal collocation represents

the state and control variables with polynomials inside each finite element. This is a form of im-

plicit Runga-Kutta methods, and thus it inherits the benefits associated with these methods, such

as stability. Simultaneous methods require efficient large-scale NLP solvers and accurate problem

information, such as exact second derivatives, to perform well.

min
u,z

n

∑
i

J (zi,ui) (1.6a)

0 = f (zi,ui) ∀ i ∈ n (1.6b)

0≤ g(zi,ui) ∀ i ∈ n (1.6c)

Collocation Equations (1.6d)

where n is the number of time points in the discretized time horizon, z =
[

dx
dt
,x
]

is the combined

state vector, and the collocation equations are added to relate differential terms to the state values.

The collocation equations and derivation are detailed in [57].

9



www.manaraa.com

Semi-Sequential Intermediates

Most modeling languages only include standard variables and constraints, where all al-

gebraic constraints and their associated variables are solved implicitly through iterations of the

optimizer. A unique variable type that applies the benefits of a sequential approach to algebraic

constraints is available in some packages and are termed Intermediates. Intermediates, and their

associated equations, are like variables except that they are defined and solved explicitly and suc-

cessively substituted at every solver function call. Intermediate values, first derivatives, and second

derivatives are substituted into other successive Intermediates or into the implicit equations. This

is done outside of the solver in order to reduce the number of algebraic variables while maintaining

the readability of the model.

In very large-scale problems, removing a portion of variables from the matrix math of

implicit solutions can reduce matrix size, keeping problems within the efficient bounds of hardware

limitations. This is especially the case with simultaneous dynamic optimization methods, where a

set of model equations are multiplied over all of the collocation nodes. For each variable reduced in

the base model, that variable is also eliminated from every collocation node. Intermediate variables

essentially blend the benefits of sequential solver approaches into simultaneous methods.

1.3.3 Available Software Packages

There are many software packages and modeling languages currently available for opti-

mization and optimal control. This section, while not a comprehensive comparison, attempts to

summarize some of the distinguishing features of each package.

Pyomo [58] is a Python package for modeling and optimization. It supports automatic dif-

ferentiation and discretization of DAE systems using orthogonal collocation or finite-differencing.

The resulting nonlinear programming (NLP) problem can be solved using any of several dozen

AMPL Solver Library (ASL) supported solvers.

JuMP [59] is a modeling language for optimization in the Julia language. It supports so-

lution of linear, nonlinear, and mixed-integer problems through a variety of solvers. Automatic

differentiation is supplied, but as of this writing, JuMP does not include built-in support for differ-

ential equations.
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Casadi [60] is a framework that provides a symbolic modeling language and efficient auto-

matic differentiation. It is not a dynamic optimization package itself, but it does provides building

blocks for solving dynamic optimization problems and interfacing with various solvers. Interfaces

are available in MATLAB, Python, and C++.

GAMS [61] is a package for large-scale linear and nonlinear modeling and optimization

with a large and established user base. It connects to a variety of commercial and open-source

solvers, and programming interfaces are available for it in Excel, MATLAB, and R. Automatic

differentiation is available.

AMPL [62] is a modeling system that integrates a modeling language, a command lan-

guage, and a scripting language. It incorporates a large and extensible solver library, as well as fast

automatic differentiation. AMPL is not designed to handle differential equations. Interfaces are

available in C++, C#, Java, MATLAB, and Python.

The gProms package [63] is an advanced process modeling and flow-sheet environment

with optimization capabilities. An extensive materials property library is included. Dynamic op-

timization is implemented through single and multiple shooting methods. The software is used

through a proprietary interface designed primarily for the process industries.

JModelica [64] is an open-source modeling and optimization package based on the Model-

ica modeling language. The platform brings together a number of open-source packages, providing

ODE integration through Sundials, automatic differentiation through Casadi, and NLP solutions

through IPOPT. Dynamic systems are discretized using both local and pseudospectral collocation

methods. The platform is accessed through a Python interface.

ACADO [65] is a self-contained toolbox for optimal control. It provides a symbolic model-

ing language, automatic differentiation, and optimization of differential equations through multiple

shooting using the built in QP solver. Automatic C++ code generation is available for online predic-

tive control applications, though support is limited to small to medium-sized problems. Interfaces

are available in MATLAB and C++.

DIDO [66] is an object-oriented MATLAB toolbox for dynamic optimization and optimal

control. Models are formulated in MATLAB using DIDO expressions, and differential equations

are handled using a pseudospectral collocation approach. At this time, automatic differentiation is

not supported.
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GPOPS II [67] is a MATLAB-based optimal control package. Dynamic models are dis-

cretized using hp-adaptive collocation, and automatic differentiation is supported using the ADi-

Gator package. Solution of the resulting NLP problem is performed using either the IPOPT or

SNOPT solvers.

PROPT [68] is an optimal control package built on top of the TOMLAB MATLAB op-

timization environment. Differential equations are discretized using Gauss and Chebyshev col-

location, and solutions of the resulting NLP are found using the SNOPT solver. Derivatives are

provided through source transformation using TOMLAB’s symbolic differentiation capabilities.

Automatic scaling and integer states are also supported. Access is provided through a MATLAB

interface.

PSOPT [69] is an open-source C++ package for optimal control. Dynamic systems are dis-

cretized using both local and global pseudospectral collocation methods. Automatic differentiation

is available by means of the ADOL-C library. Solution of NLPs is performed using either IPOPT

or SNOPT.

In addition to those listed above, many other software libraries are available for modeling

and optimization, including AIMMS [70], CVX [71], CVXOPT [72], YALMIP [73], PuLP [74],

POAMS, OpenOpt, NLPy, and PyIpopt.

GEKKO

As part of the work in this dissertation, a new modeling platform, with special emphasis on

dynamic optimization, was released as “GEKKO” [75]. GEKKO fills the role of a typical AML, but

extends its capabilities to specialize in dynamic optimization applications. As an AML, GEKKO

provides a user-friendly, object-oriented Python interface to develop models and optimization so-

lutions. Python is a free and open-source language that is flexible, popular, and powerful. IEEE

Spectrum ranked Python the #1 programming language in 2017. As a Dynamic Optimization

package, GEKKO accommodates DAE systems with built-in discretization schemes and facilitates

popular applications with built-in modes of operation and tuning parameters. For differential and

algebraic equation systems, simultaneous and sequential methods are both built in to GEKKO.

Modes of operation include data reconciliation, real-time optimization, dynamic simulation, mov-

ing horizon estimation, and nonlinear model predictive control. The back-end compiles the model
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to an efficient low-level format and performs model reduction based on analysis of the sparsity

structure (incidence of variables in equations or objective function) of the model.

1.4 Non-Linear Programming Solvers

In the same manner that understanding physical and organic chemistry enables chemicals

engineers to design better manufacturing processes, an understanding of NLP solver algorithms

enable better optimization solutions. The paradigms of combined scheduling and control presented

in this dissertation become increasingly more beneficial, but also more complex and difficult to

solve. Later approaches are specifically tailored to take advantage of the solver methodologies

explained in this section.

NLP addresses problems of form in Equation 1.1, repeated here:

minimize
x

f (x)

subject to c(x) = 0

d(x)≤ 0

xL ≤ x≤ xU

Sequential Quadratic Programming (SQP) solvers require two phases for efficient solu-

tions. The inner subroutine is a Quadratic Programming (QP) problem solving the Karuhn-Kush

Tucker conditions of an approximation of a quadratic objective function and constraints. The solu-

tion to the approximation requires an outer subroutine to direct the line search and find the solution

to the NLP. Algorithmic implementations and mathematical theory determine the efficiency of the

algorithm, especially for large-scale problems. Depending on the specifics of a proposed problem,

algorithms perform differently.

Interior-point solvers utilize a barrier function added to the objective function to eliminate

inequality constraints. Interior-point solvers use Newton’s Method to solve a QP comprised of a

quadratically approximated objective function and linearly approximated equality constraints. The

algorithm converges as the barrier parameter is relaxed completely [76, 77].

Active-set solvers define a subset of the constraints as “active”, and employ on this subset to

find the optimal value. Active-set solvers have been implemented in algorithms similar to interior
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point solvers where an approximated QP is solved using Newton’s Method. The solution of the QP

produces a new active set for the following iteration. The active set eventually represents the true

active set at the solution, and the algorithm converges [78].

Interior point and active set methods excel in different circumstances. Interior point meth-

ods can handle problems with over a million variables [2], while excellent active-set SQP methods,

such as SNOPT, are best suited for less than a few thousand degrees of freedom [79]. Active set

methods are better suited to a warm-started problem while interior point methods can better handle

poor initialization [80]. Interior point methods typically require fewer iterations than active set

methods for difficult problems. However, each iteration is more difficult because all of the con-

straints are considered while the active set only includes a portion of the constraints in calculating

the step [81]. Several recent papers show the difference in convergence ease and speed. Middleton

et al. [82], Ternet et al. [83], and Bartlett et al. [84] report interior point using between 12.5 and

467 percent the CPU time that active set uses for their problems. Mishra et al. [85] report their

interior point solver taking significantly less iterations than an active set solver. Clearly these CPU

times vary significantly based on a variety of factors including number of variables, initial guess,

and problem structure.

SQP solvers are a common active set method and were introduced by Wilson [86]. Deter-

mining the active set for each iteration is mostly heuristics. Oberlin et al. [87] give a few examples

of determining an active set. The reduced-gradient approach to the active set further divides the

variables into nonbasic, basic and superbasic sets [88].

All solving schema incorporating approximations require globalization strategies to find the

minimum of the actual problem. The solution of the approximated problem provides an accurate

local solution, but does not guarantee progression towards the actual minimum. Globalization

strategies direct each iteration toward the solution of the actual problem. Notably, filter methods,

a globalization strategy for nonlinear programming, were introduced by Fletcher et al. [89]. Filter

methods have been applied in both active set and interior point methods successfully [77, 90–

94].
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1.4.1 Basic Interior Point Algorithm

Interior point methods have been widely used for years and are still being improved by

researchers today [77, 94–100]. Interior point methods begin by introducing slack variables to

Equation 1.1 that allow inequality constraints, d(x) ≤ 0, to be reformulated into equality con-

straints:

d(x)+ s = 0, s≥ 0 (1.7)

Since s is a regular, bounded variable, it is treated as part of x. For simplicity, assume x is bounded

only on one side (the extension to two-sided bounds is obvious). The interior point or barrier

method then adds a barrier term to the objective function to force x into the interior. The problem

then becomes:

minimize
x

φ(x) := f (x)−µ ∑
i

ln(xi)

subject to c(x) = 0

x≥ 0

(1.8)

The barrier term µ ∑i ln(xi) penalizes the objective function, which slides the solution away

from the boundary, beyond which the solution is undefined. This forces each iteration to remain

in the feasible region. Forcing a feasible path results in a strength of the interior-point algorithm:

better performance with poor initialization.

The barrier parameter µ sequentially decreases toward zero to allow x to reach the bound-

ary without penalty or numerical difficulties. The sequential decreasing highlights a weakness of

this method: extra iterations are always required to reach inequality bounds until the barrier is

sufficiently reduced.

The Karush-Kuhn-Tucker (KKT) conditions for Problem 1.8 include the following primal-

dual equations:

∇φ(x)+∇c(x)λ = 0

c(x) = 0
(1.9)
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However, it is known that ∇φ(x) = ∇ f (x)+∇µ ∑i ln(xi). Since the barrier term always

assumes the same form, its gradient extracts to:

∇

(

µ ∑
i

ln(xi)

)

= µ/x := z

We can then modify the KKT conditions to implement z with a linear equation,

∇ f (x)+∇c(x)λ − z = 0

c(x) = 0

XZe−µe = 0

(1.10)

Here, λ ∈ R
m is a vector of Lagrange multipliers for the equality constraints while z ∈ R

n

serves as Lagrange multipliers for the bound constraints. X and Z represent matrices with x and

z down the diagonal, respectively. When µ = 0, these become the KKT conditions of the general

case.

For termination and barrier term reduction, the optimality error is defined as:

Eµ := max

{
∥

∥∇ f (x)+∇c(x)λ − z
∥

∥

∞

sd

,
∥

∥c(x)
∥

∥

∞
,
‖XZe−µe‖∞

sc

}

(1.11)

where sd and sc are extra parameters to avoid numerical difficulties, especially when the multipliers

λ and z are large. With this optimality error, the algorithm terminates successfully when

E0(x∗,λ∗,z∗)≤ εtol (1.12)

The termination condition assumes µ = 0. The optimality error also determines when the barrier

parameter µ should be decreased:

Eµ j
(x∗, j+1,λ∗, j+1,z∗, j+1)≤ κε µ j (1.13)
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where κε > 0 is a tuning parameter of the solver. When the conditions of Equation 1.13 are met,

µ updates:

µ j+1 = max

{

εtol

10
,min

{

κµ µ j,µ
θµ

j

}

}

(1.14)

where κµ ∈ (0,1) and θµ ∈ (1,2) are additional tuning parameters. Equation 1.14 ensures µ

doesn’t decrease enough to cause numerical difficulties while it decreases µ linearly, then su-

perlinearly. This demonstrates the extra iterations required near the end of the interior point

method.

Newton Step

Iteration proceeds with Newton steps toward a solution of the KKT conditions (Eq. 1.10).

In matrix form, this is presented as:
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(1.15)

Where Ak := ∇c(xk) and Wk is the Hessian ∇2
xxL (xk,λk,zk),

L (x,λ ,z) := f (x)+ c(x)T λ − z (1.16)

However, instead of solving this nonsymmetric problem, the Newton step can be restructured to

solve the symmetric problem shown in Equation 1.17 and later find z using Equation 1.18. In

Equation 1.17, Σk := X−1
k Zk. Despite this restructuring, this linear solve is a weakness of interior

point methods because all constraints are always included, even if an inequality constraint is far

from the optimal point. Including every constraint makes the matrix larger, slowing down the

factorization, which is already a limiting factor in solution speed.
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∇φµ j
(xk)+Akλk

c(xk)






(1.17)
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dz
k = µ jX

−1
k e− zk−Σkdz

k (1.18)

The search direction then calculates the variable values for the next iteration:

xk+1 := xk +αkdx
k (1.19a)

λk+1 := λk +αkdλ
k (1.19b)

zk+1 := zk +αz
kdz

k (1.19c)

αk,α
z
k ∈ (0,1) scale the step size to a feasible direction. For this, we introduce a “fraction-to-the-

boundary” parameter τmin ∈ (0,1) which is a function of the barrier parameter µ .

τ j = max{τmin,1−µ j} (1.20)

The maximum αk is calculated:

αmax
k := max

{

α ∈ (0,1] : xk +αdx
k ≥ (1− τ j)xk

}

(1.21a)

αz
k

:= max
{

α ∈ (0,1] : zk +αdz
k ≥ (1− τ j)zk

}

(1.21b)

αz
k is used in the step, but αk can be further decreased within the line search as αk,l = 2−lαmax

k with

l = 0,1,2, ... where l counts the iterations of the line search, described in Section 1.4.3. First, we

mention that z is corrected at the end of each iteration:

zi
k+1←max







min

{

zi
k+1,

κΣµ j

xi
k+1

}

,
µ j

κΣxi
k+1







, i = 1, ...,n (1.22)

with κΣ ≥ 1 to ensure that Σk doesn’t deviate arbitrarily much from µ jX
−2
k . Thus, each component

σk+1 of Σk+1 stays within

σ i
k+1 ∈

[

µ j

κΣ(x
i
k)

2
,

µ jκΣ

(xi
k)

2

]

(1.23)
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1.4.2 Basic Active Set Algorithm

The active set method offers a different approach to dealing with inequality constraints. The

active set assumes a “set” of constraints are “active” and then solves the problem with just the active

constraints. If the inactive constraints are not violated and the active Lagrange multipliers remain

negative, then the step is accepted and the algorithm continues to the next iteration. Otherwise

the active set is updated and the search direction is recalculated. Many researchers are actively

advancing this algorithm as well [93, 101–103].

SQP

The most common implementations of active-set solvers use the SQP algorithm. SQP

active set methods apply the active set in the QP subproblem, with “minor” iterations until an

active set is found that meets the QP optimality conditions. The QP solution is passed back to the

“major” iteration for a nonlinear line search and refinement of the active set.

The formulation for an active set problem is shown in Equation 1.24. Like the interior point

method, the inequality constraints can be converted to equality constraints with slack variables,

as show in Equation 1.7. Conditions for active inequality constraints are then applied through

the respective slack variables. Again, the algorithm is presented with one-sided boundaries for

simplicity.

minimize
x

f (x)

subject to c(x) = 0

0≤ u⊥(s)≥ 0

(1.24)

y⊥z denotes the complementarity conditions that yi = 0 (inclusive) or zi = 0 for all elements

i of these vectors.

The Karush-Kuhn-Tucker (KKT) conditions for Problem 1.24 are below,

∇ f (x)+∇c(x)λ −EuA = 0

c(x) = 0

ET s = 0

(1.25)
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Here, u ∈R
n is a vector of the variable bound multipliers. E determines the active variable

bounds; Ei = 1 if constraint i is active or Ei = 0 otherwise.

Newton Step/QP Solver

Iteration proceeds with Newton steps toward a solution of the KKT conditions (Eq. 1.25).

In matrix form, this is presented as:













Hk Ak −E

AT
k 0 0

−ET 0 0

























dx
k

dλ
k

d
uA

k













=−













∇ f (xk)+Akλk

cA(xk)

ET (−sk)













(1.26)

Where cA is the set of active constraints, Ak := ∇cA(xk) and Hk is the Hessian ∇2
xxL (xk,λk). By

removing the inactive constraints, the active-set Newton step becomes computationally lighter than

that of the interior point method.

However, the inner QP solver of the active set method has its own optimality conditions,

shown in Equation 1.27 where x̂k, ŝk, and λ̂k are the solution to the QP. The variable s represents

the slack variables of the constraints.

c(xk)+Ak(x̂k− xk) = ŝk (1.27a)

∇ f (xk)+Hk(x̂k− xk) = AT
k λ̂k (1.27b)

λ̂k ≥ 0, ŝk ≥ 0, λ̂kŝk = 0 (1.27c)

The Newton step satisfies Equations 1.27a-1.27b, but may violate Equation 1.27c, in which case

the active set must be readjusted and the Newton step must be recalculated with the new active set.

The possibility of multiple QP iterations (called “minor iterations”) is a weakness of the active set

method which sometimes counters the benefit of the smaller matrix factorization.

20



www.manaraa.com

Determining the Active Set

Inside the QP, the active set is determined for the approximated problem to avoid extra

function calls. In the outer loop, function calls are necessary for the line search. These function

calls are then used to refine the active set to the unapproximated problem. Most methods to deter-

mine the active set for commercial active set solvers are proprietary. This makes it inconvenient

to build off of others’ work. One method introduces Ψ in Equation 1.28 to determine the active

set from the violation and multipliers of the slack variables to avoid unnecessary switching of the

active set.

Ψ(x,u,λ ) =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥













∇xL (x,u,λ )

c(x)

min(λ ,−s)













∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∞

(1.28)

If the slack variable of constraint i, si <−Ψ, then constraint i is made active. If the bound multiplier

ui for slack variable si is sufficiently negative (ui <−Ψ), constraint i is made inactive. Ψ decreases

with termination conditions so it will be 0 at the solution. While the iteration is far from the optimal

point, it is less concerned with minor deviations.

1.4.3 Globalization and Line-Search Methods

Constrained optimization requires achieving two, sometimes competing, objectives: min-

imizing the objective function and satisfying constraints. Balancing these two requirements is

difficult and leads to the introduction of globalization techniques. The most common techniques

are the merit function and the filter method.

Filter Method

For a given step to pass, it must meet certain criteria. First, the next step is checked against

a filter F ⊆ {(θ ,φ) ∈R2 : θ ≥ 0}. If the point is in the filter ((θ(xk(αk,l)),φµ j
(xk(αk,l))) ∈Fk), it

is rejected. This filter prevents cycling between previously-explored regions. The filter initializes
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at the beginning and after each update to the barrier parameter µ with:

F0 :=
{

(θ ,φ) ∈ R
2 : θ ≥ θ max

}

(1.29)

If the step is not caught in the filter, the sufficient decrease condition is checked (Eq. 1.30). If Eq.

1.30 holds, and the Armijo condition (Eq. 1.32) holds, the point passes. If 1.30 does not hold,

but the switching condition (Eq. 1.31) holds, the point also passes. Otherwise, the point is not

acceptable.

The Sufficient Decrease Condition indicates an improvement, with sufficient progress, to-

ward either a decrease in the objective function φµ j
or the constraint residuals θ(x) :=

∥

∥c(x)
∥

∥.

γθ ,γφ ∈ (0,1).

θ(xk(αk,l))≤ (1− γθ )θ(xk) (1.30a)

or φµ j
(xk(αk,l))≤ φµ j

(xk)− γφ θ(xk) (1.30b)

The Switching Condition only accepts progress in the barrier function φµ j
if the constraint residuals

are sufficiently low (θ min ∈ (0,∞)).

θ(xk)≤ θ min (1.31a)

and ∇φµ j
(xk)

T dx
k < 0 (1.31b)

and αk,l

[

−∇φµ j
(xk)

T dx
k

]sφ

> δ
[

θ(xk)
]sθ (1.31c)

Since the switching conditions can accept progress towards a feasible, non-optimal point, the

Armijo Condition verifies a decrease in the objective function to avoid the non-optimal points.

φµ j
(xk(αk,l))≤ φmu j

(xk)+ηφ αk,l∇φµ j
(xk)

T dx
k (1.32)

If, after each iteration, either Equation 1.31 or Equation 1.32 does not exclusively hold, the

filter updates to mark the region of xk as taboo:

Fk+1 := Fk∪
{

(θ ,φ) ∈ R
2 : θ ≥ (1− γθ )θ(xk) and φ ≥ φµ j

(xk)− γφ θ(xk)
}

(1.33)
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Merit Function

The merit function technique defines a merit function m(x) as shown in Equation 1.34.

m(x,σ) = f (x)+σk

∥

∥c(x)
∥

∥ (1.34)

In this approach, steps are only acceptable when they decrease the merit function. This is simple to

implement and effectively restructures the problem to unconstrained optimization with objective

m(x,σ); violation of the constraints is treated as a penalty of the objective.

The difficulty of this approach is determining the correct value of σ . If the magnitude of the

constraint violation is insufficiently large compared to the objective function, the constraints are

not respected. The function becomes more accurate as σ → ∞. However, larger multiplier values

can result in numerical difficulties as the Newton’s step matrix becomes ill-conditioned.

Compared to filter methods, merit functions encourage a safe, restricted path to the so-

lution. Ofttimes, the freedom presented by the filter method allows the solver a simpler path to

the solution. Overall, filter methods have proven a worthy alternative to penalty and merit func-

tion [104].

Line Search

In QP problems, the Newton step always provides a good solution since the quadratic

problem is represented exactly. In NLP problems, the QP approximation of the Newton step is not

always accurate and the resulting step can at times yield a less optimal point. However, it is known

that a better point exists somewhere along the search direction. Therefore, NLP solvers utilize a

line-search technique to search along the vector of the step to identify a useful step size.

Sometimes, a full optimization problem is conducted along the vector to identify the mini-

mum within the subspace. This approach is usually deemed excessive. Instead, a rough optimiza-

tion seeks only to identify a point that is “good enough”, as defined by the globalization technique

implemented. A common approach is to successively halve the step length l times until the criteria

as met, as shown in Equation 1.35 where l is the number of backtracking steps taken.

dx
k,l = 2−ldx

k (1.35)
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1.4.4 Recent Advancements in Nonlinear Programming

Research in active set solvers has recently focused on solving larger systems and improving

convergence. An active-set solver has been shown in a recent paper [105] to solve a smooth

problem of up to 200,000,000 nonlinear constraints with a moderate number of variables. An

active set algorithm not requiring derivative information for bound-constrained optimization has

been developed using self-correcting geometry [106]. In addition, other research has used an

active-set solver to improve the convergence of an interior point solver and identify the correct

active set of the problem [107].

Interior Point solver research gained attention from the development of the state-of-the-

art solver IPOPT in a 2004 paper by Waechter [108]. Since the advent of IPOPT, interior point

solvers have been improved through regularization techniques [109, 110]. Wan [111] presents

a novel method for structured regularization that detects dependent constraints during the LBLT

decomposition and perturbs only the necessary constraints. Prior to IPOPT [112], improvement in

interior point methods were developed using Mehotra’s corrector-predictor algorithm [113].

Of the different components of solvers in literature, globalization strategies appear most

frequently. Mayne and Polak implement a search arc rather than a search direction [114]. Fletcher

and Leyffer developed the penalty function free filter concept [89] and implemented efficiently

with a line-search technique [108, 115]. A trust region with memory of previous iterates has been

implemented [116] to improve convergence.

Avoiding the Maratos effect (the inability of a filter or merit function to accept full Newton

Steps close to a strict local minimum) has received marked attention in the literature. A trust

region framework development and observation of the Maratos effect for trust regions are put

forth by Byrds [117]. Non-monotone line searches to avoid the Maratos Effect have also been

studied. Chamberlain et al. implement a non-monotone watchdog technique to avoid the Maratos

effect [118]. Other non-monotone line search strategies include the generalization of Armijo’s

condition combined with a watchdog technique [119] and the combination of Mayne and Polak’s

search arc with the watchdog technique [120].

More recently, research in globalization strategies has focused on integrating multiple

strategies. A non-monotone trust region with a line search technique [121] combines two glob-

alization strategies to make a more efficient and robust algorithm. A similar trust region and line
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search integrated approach decreases computational expense [122]. Another recent article imple-

ments a spectral gradient method to determine step size in a line search [123].

Most optimization algorithms approximate nonlinear constraints linearly to solve the New-

ton Step. The more nonlinear the constraints are, the less accurate the Newton Step is towards the

actual solution. To solve highly nonlinear equations, higher order methods have received attention

in the literature [124]. Higher order and correction steps used to solve non-linear problems have

shown improved convergence in convex and non-convex scenarios. Kchouk and Dussault propose

a generalization of higher order and iterative methods [125, 126]. Using a comparison of conver-

gence to cost, the above authors determine that higher order methods were more efficient compared

to Newton’s Method for large systems of nonlinear equations.

Higher order methods have been shown to converge faster than Newton’s method for un-

constrained optimization close to the solution [127]. Accelerated gradient methods calculate a step

and then go slightly farther to achieve faster convergence. Ghadimi et al. extend the accelerated

gradient from smooth convex applications to non-convex nonlinear optimization [128]. The exten-

sion achieves optimal convergence for convex problems and improves the best rate of convergence

for non-convex problems. Another iterative method called the predictor-corrector method has been

applied to Halley’s method [129] to improve convergence rate. Other research has developed high

order convergent iterative schemes not requiring second derivative information by using numeri-

cal methods [130, 131]. One drawback to higher order methods is low computational efficiency

in calculating higher order derivatives. The authors of [132] determine that the ratio of the num-

ber of arithmetic operations for Halley’s step and Newton’s Step is independent of the number of

unknowns for Hessian matrices with skyline or envelope structure.

Recent literature for solver algorithms focuses on improving individual components of

solver performance. Many authors have exploited problem structure to improve algorithmic ef-

ficiency. For problems with block diagonal Hessians typical in optimal control, updating blocks of

the Hessian using SR1 updates when possible and implementing an inertia control algorithm in the

factorization increase computational efficiency [133]. A visual comparison method for algorithms

and a Broyden–Fletcher–Goldfarb–Shanno (BFGS) SQP algorithm has been developed [134]. The

BFGS SQP algorithm outperforms SNOPT. Another computationally expensive part of solvers is

the feasibility restoration phase. If a globalization strategies fail to find any acceptable step length,
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a trial point outside of the vicinity is chosen through a restoration phase. Li and Yang [135] de-

velop a line-search technique that functions without requiring a filter, penalty function, or restora-

tion phase. Their algorithm implements a novel pivoting algorithm for the active set. Other au-

thors have combined solver methods using an augmented Lagrangian for equality constraints and

a barrier function for inequality constraints [136]. In addition, approximating constraints using

quadratic rather than linear approximations has been designed and implemented [137].

Solver algorithms can operate in the feasible space only or also in the infeasible space.

In some problems, a solution in the feasible space does not exist. Finding an infeasible solution

quickly can reduce a solver’s iterations in finding a non-existing feasible solution. An algorithm

has been created [138] to find infeasible solutions at the same convergence rate as feasible solutions

using a SQP algorithm. However, solvers operating only in the feasible region give feasible solu-

tions at every iterate. Iteration details can provide good information about a solution if the solver

stays in the feasible space. To provide this information, Zhu et al. have developed an efficient SQP

algorithm iterating only in the feasible region [116].

Algorithm analysis has also appeared in literature. Information about worst-case and best-

case efficiency has been examined. For example, algorithmic complexity of nonconvex diminish-

ing step size algorithms are analyzed in [139].

1.5 Scheduling

Scheduling answers the questions of when to produce each product. Scheduling optimiza-

tion algorithms are centered around market price (of both products and raw materials), market de-

mand, deadlines and contractual agreements. The field of scheduling optimization is particularly

difficult for a number of reasons. Primarily, the time-scales under consideration naturally include

a lot of uncertainty. If any part of the schedule breaks down, subsequent deadlines are likely to be

missed. There are many discrete events such as on-spec production or waste, or the availability of

materials (such as storage tanks). Mixed-integer problems are magnitudes of order more difficult

than continuous problems, especially mixed-integer non-linear programming (MINLP). To obtain

reasonable schedules in a useful amount of time, schedulers have historically reduced their prob-

lems to mixed-integer linear problems. Further, practitioners deliberately ignore some scheduling

considerations in the optimization, opting instead for human manipulation of optimization output
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for final schedules. A recent review paper on industrial implementations of scheduling states that

the optimized schedule should be output in a user-friendly format and to assume that the scheduler

will manually adjust the results [140]. The human-in-the-loop also factors in emotional considera-

tion that are difficult to quantify such as gut feelings, reliability of certain units, relationships with

customers, etc.

As part of the model simplification, only steady-state process models are considered. In

batch processes, this reduces “stages” of the process to a uniform block. In continuous process, this

considers only steady-state production. This dissertation explores continuous chemical manufac-

turing. By ignoring process dynamics, the scheduler loses two benefits: knowledge of transitions

between products and only one possible steady-state production condition per product. Transi-

tions play an important role in scheduling because they are effectively down-time generating only

waste/off-spec products. By not considering this down time, the scheduler is overly-optimistic

and always wrong. By only considering one steady-state, the scheduler loses the possibility of

increased production rates under favorable conditions.

There are two main paradigms to representing time in scheduling optimization: continuous-

time (or “slot-based” schedules) or discrete-time schedules. In continuous-time schedules, produc-

tion of a given product is assigned a “slot”. The beginning and ending time of each slot is deter-

mined by the solver and is linked to the slot times of adjacent slots. Any value of time is possible,

thus time is “continuous”. In advanced slot-based scheduling, the number of slots is also optimized

in an outer loop. This is a favorable approach because the number of degrees of freedom is equal

to the number of production slots (effectively the length of time for each slot) and slot lengths

have infinite options. The alternative approach discretizes time to a fixed number of points. The

solver then selects which product is produced during each time interval. In this approach there are

degrees of freedom for each discrete time point and production length is fixed to discrete intervals

matching time discretization. With this perspective, continuous-time scheduling appears to be su-

perior. However, [141] found that the arbitrary formulation of slot-based schedules proved more

difficult for solvers as the problem increased in complexity, whereas the discrete-time approach

difficulty scaled more reasonably.
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1.6 Control

The primary objective of controllers is to maintain process conditions at a pre-determined

set of conditions, or “set points”, as shown in Equation 1.3. Steady-state set point are often de-

termined by RTO to produce the product selected by the scheduler. The challenges of advanced

control are dominated by the time scales of the real system. Controllers must be kept on-line and

must therefore be robust and reliably solve fast enough for control moves to be relevant. Con-

trol faces challenges in process disturbances, inexact process models (plant-model mismatch) and

messy measurements.

The core of MPC is the model of the system, defined by the engineer. A more accurate

model of the system yields better results. With an inaccurate model, the optimizer will find the

very best control move for an irrelevant system. However, high-fidelity models, such as those

used in high-end simulators, are too slow to be useful in real-time. Practitioners must judge the

appropriate level of detail to include in MPC models, knowing that some model mismatch will

be compensated through feedback loops. If a model is not sufficiently robust, it could return an

infeasible result and the control is then worthless on a live system. Sometimes safeguards can

account for the occasional error, but frequent failures are unacceptable to process operators.

MPC typically has many degrees of freedom since the problem is dynamic and discretized

through time. Each manipulated variable adds a degree of freedom at every discrete time point.

1.7 Combining Scheduling and Control

By applying modern tools to their fullest capacity, we find added benefits by solving in-

creasingly larger problems. These advanced techniques are more efficient, result in less waste and

are more profitable. With an understanding of modern control and scheduling approaches, and the

underlying tools of modeling languages and solvers, this dissertation explores approaches to com-

bine scheduling and control together. Through unification, scheduling gains knowledge of process

dynamics and the controller gains knowledge of multiple products and economics. Together, we

find the unified problem addresses defects and performs better than is possible through the current

scheme.
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This field is difficult because of the massive scale of the problem. Scheduling inherently re-

quires long timescales, while control requires detailed process dynamics. Mixing the two creates a

large problem of detailed process dynamics over long times. However, successful implementations

are demonstrated to be of significant benefit.

1.8 Outline

The remainder of this dissertation explores the combining of scheduling and control. Chap-

ter 2 motivates the field by exploring the benefits of combining scheduling and control. Various

degrees of integration are postulated and implemented. Simulated disturbances highlight the weak-

nesses of the current, segregated approach. The economic benefits of the progressively integrated

scheduling and control are quantified in simulated case studies.

Chapter 3 explores integration of scheduling and control in discrete-time. This chapter fo-

cuses on fast, robust solutions by limiting the dynamics to a linear model and keeping the problem

within quadratic equations. Changing production rates are included through time-scaling. This

approach is applicable to mostly-linear problems, or those currently using linear MPC.

Chapter 4 expands the discrete-time approach of Chapter of 3 to a full nonlinear problem.

By allowing nonlinear constraints, the full benefits of the discrete-time approach are exploited

through time-based constraints and parameters for the most profitable solutions.

1.9 Novel Contributions

The following contributions to the optimization community are presented in this disserta-

tion:

• Present a computationally light decomposed integration method employing continuous-time

scheduling and NMPC

• Propose a benchmark problem with four stages of integration and three relevant disturbances

• Implement the benchmark study and quantitatively demonstrate the benefit of tighter inte-

gration of scheduling and control
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• Present a paradigm that fully unifies scheduling and control to one optimization problem

with a discrete-time formulation that both generates a schedule and maintains closed-loop

control

• Apply the discrete-time approach with dynamic linear models

• Present time-scaling algorithm to enable the algorithm with varying production rates

• Achieve fast solutions with Quadratic Programming with Quadratic Constraints (QPQC)

framework

• Present various continuous-relaxation approaches of binary variables in discrete-time with

sample performance metrics

• Implement discrete-time approach in full-nonlinear form to enable dynamic constraints and

parameters

• Present initialization techniques to promote convergence, including novel application of

feedback linearization

Portions of this chapter are derived from the following published works:

Beal, L. D. R., Hill, D. C., Martin, R. A., and Hedengren, J. D., 2018. “Gekko optimization

suite.” Processes, 6(8)

Petersen, D., Beal, L. D. R., Prestwich, D., Warnick, S., and Hedengren, J. D., 2017. “Com-

bined noncyclic scheduling and advanced control for continuous chemical processes.” Processes,

5(4)
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CHAPTER 2. ECONOMIC BENEFIT FROM PROGRESSIVE INTEGRATION OF

SCHEDULING AND CONTROL FOR CONTINUOUS CHEMICAL PROCESSES

This chapter is composed of the following articles published in the Processes Journal Spe-

cial Issue “Combined Scheduling and Control”:

Beal, L. D. R., Petersen, D., Pila, G., Davis, B., Warnick, S., and Hedengren, J. D., 2017.

“Economic benefit from progressive integration of scheduling and control for continuous chemical

processes.” Processes, 5(4)

Petersen, D., Beal, L. D. R., Prestwich, D., Warnick, S., and Hedengren, J. D., 2017. “Com-

bined noncyclic scheduling and advanced control for continuous chemical processes.” Processes,

5(4)

2.1 Introduction

Production scheduling and advanced process control are related tasks for optimizing chem-

ical process operation. Traditionally, implementation of process control and scheduling are sepa-

rated; however, research suggests that opportunity is lost from separate implementation [14, 143,

144]. Many researchers suggest that economic benefit may arise from integrating production

scheduling and process control [19, 27, 30, 31, 145–147]. Though integration may provide eco-

nomic benefit, scheduling and control integration presents several challenges which are outlined

in multiple reviews on integrated scheduling and control (ISC) [14–17, 140]. Some of the major

challenges to integration mentioned in review articles include time-scale bridging, computational

burden, and human factors such as organizational and behavioral challenges.

2.1.1 Economic Benefit from Integrated Scheduling and Control

Many complex, interrelated elements factor into the potential benefit from the integration

of scheduling and control, including the following [14, 15]:
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1. Rapid fluctuations in dynamic product demand

2. Rapid fluctuations in dynamic energy rates

3. Dynamic production costs

4. Benefits of increased energy efficiency

5. Necessity of control-level dynamics information for optimal production schedule calculation

In the current economic environment, demand and selling prices for the products and inputs

of chemical processes can change significantly over the course of not only months and years,

but on the scales of weeks, days, and hours [14, 15, 140]. Energy rates often fluctuate hourly,

with peak pricing during peak demand hours and rate cuts during off peak hours (sometimes even

negative rate cuts occur during periods of excess energy production) [15]. An optimal schedule is

intrinsically dependent upon market conditions such as input material price, product demand and

pricing, and energy rates [140]. Therefore, when market conditions change, the optimal production

sequence or schedule may also change. Since the time scale at which market factors fluctuates has

decreased, the time scale at which scheduling decisions must be recalculated should also decrease

[14, 140].

Frequent recalculation of scheduling on a time scale closer to that of advanced process con-

trol (seconds to minutes) leads to a greater need to integrate process dynamics into the scheduling

problem [14]. According to a previous review [15], process dynamics are important for optimal

production scheduling because (i) transition times between any given products are determined by

process dynamics and process control (ii) process dynamics may show that a calculated production

sequence or schedule is operationally infeasible (iii) process disturbances may cause a change in

the optimal production sequence or schedule.

2.1.2 Previous Work

Significant research has been conducted on the integration of production scheduling and

advanced process control [14, 15]. This section summarizes evidence for economic benefit from

integration, upon which this work builds. Previous research showing the benefits of combined

scheduling and control is explored and previous research done to show the economic benefits of

combined over segregated scheduling and control is examined. The reviewed articles are summa-
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Table 2.1: Economic Benefit of Integrated Scheduling and Control (ISC) Over Segregated Schedul-

ing and Control (SSC)

Author Compare Batch(B) or Example

ISC/SSC Continuous(C) Application(s)

Baldea et al. [21] C CSTR

Baldea et al. [22] C MMA

Baldea [148] C chemical processes as energy storage

Beal et al. [39] C CSTR

Beal et al. [37] C CSTR

Cai et al. [149] B Semiconductor production

Capon-Garcia et al. [19] B 2 different batch plants

Chatzidoukas et al. [150] X C gas-phase polyolefin FBR.

Chatzidoukas et al. [151] X C catalytic olefin copolymerization FBR

Chu & You [24] C MMA

Chu & You [23] C CSTR

Chu & You [152] B parallel polymerization & purification (RTN)

Chu & You [153] X B 5-unit batch process

Chu & You [154] X B sequential batch process

Chu & You [25] B reaction, filtration, reaction tasks

Chu & You [155] B 8-unit batch process

Chu & You [156] X B 8-unit batch process

Dias et al. [157] C MMA

Du et al. [35] C CSTR & MMA

Flores-Tlacuahuac & Grossmann [29] C CSTR

Flores-Tlacuahuac [30] C Parallel CSTRs

Gutiérrez-Limón et al. [158] C CSTR

Gutiérrez-Limón et al. [159] C CSTR & MMA

Gutiérrez-Limón et al. [160] C CSTR

Koller & Ricardez-Sandoval [161] C CSTR

Nie & Bieglier [147] X B flowshop plant (reactor, filter, distillation)

Nie et al. [162] BC parallel polymerization & purification

Nystrom et al. [8] C industrial polymerization process

Nystrom et al. [145] C industrial polymerization process

Patil et al. [163] C CSTR & HIPS

Pattison et al. [26] X C ASU model

Pattison et al. [27] C ASU model

Prata (2008) et al. [164] C medium industry-scale model

Terrazas-Moreno et al. [165] C MMA (with one CSTR) & HIPS

Terrazas-Moreno et al. [28] C HIPS & MMA

Terrazas-Moreno et al. [31] C HIPS & MMA

You & Grossmann [166] C medium & large polystyrene supply chains

Zhuge & Ierapetritou [20] C CSTR & PFR.

Zhuge & Ierapetritou [32] B simple and complex batch processes

Zhuge & Ierapetritou [33] C SISO & MIMO CSTRs

Zhuge & Ierapetritou [34] X C CSTR & MMA
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rized in Table 2.1. This work focuses on research demonstrating benefit over a baseline comparison

of segregated scheduling and control (SSC).

Integrating Process Dynamics into Scheduling

Mahadevan et al. suggest that process dynamics should be considered in scheduling prob-

lems. To avoid the computational requirements of mixed-integer nonlinear programming (MINLP),

they include process dynamics as costs in the scheduling problem [167]. Flores-Tlacuahuac and

Grossman implement process dynamics into scheduling directly in a mixed-integer dynamic op-

timization (MIDO) problem with a continuous stirred tank reactor (CSTR). Chatzidoukas et al.

demonstrated the economic benefit of implementing scheduling in a MIDO problem for polymer-

ization, solving product grade transitions along with the scheduling problem [150]. Economic

benefit has also been shown for simultaneous selection of linear controllers for grade transitions

and scheduling, ensuring that the process dynamics from the controller selection are accounted

for in the scheduling problem [151]. Terrazas-Moreno et al. also demonstrate the benefits of

process dynamics in cyclic scheduling for continuous chemical processes [28]. Capon-Garcia

et al. prove benefit of implementing process dynamics in batch scheduling via a MIDO prob-

lem [19]. MIDO batch scheduling optimization with dynamic process models is shown to be more

profitable than a fixed-recipe approach. Chu and You also demonstrate enhanced performance

from batch scheduling with simultaneous solution of dynamic process models over a traditional

batch scheduling approach [153, 154, 156]. Economic benefit from integrating process dynamics

into batch and semi-batch scheduling has also been demonstrated via mixed-logic dynamic opti-

mization in state equipment networks and solution with Benders decomposition in resource task

networks [147, 162]. Potential for economic benefit from integrating process dynamics into de-

sign, scheduling, and control problems has also been demonstrated [163,165,168]. Computational

reduction of incorporating process dynamics into scheduling has been investigated successfully,

maintaining benefit from the incorporation of process dynamics into scheduling while reducing

dynamic model order [21, 22, 26, 27, 35].
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Reactive Integrated Scheduling and Control

Research indicates that additional benefit arises from ISC responsive to process distur-

bances, which are a form of process uncertainty. This is in congruence with recent work by Gupta

and Maravelias demonstrating that increased frequency of schedule rescheduling (on-line schedul-

ing) can improve process economics [169–171]. Many previous works considering reactive ISC

are outlined in Table 2.2. For a complete review of ISC under uncertainty, the reader is directed

to a recent review by Dias and Ierapetritou [157]. Zhuge and Ierapetritou demonstrate increased

profit from closed-loop implementation (over open-loop implementation) of combined scheduling

and control in the presence of process disturbances [20]. The schedule is optimally recalculated

when a disturbances is encountered. Zhuge and Ierapetritou also present methodology to reduce the

computational burden of ISC to enable closed-loop on-line operation for batch and continuous pro-

cesses. They propose using multi-parametric model predictive control for on-line batch scheduling

and control [32], fast model predictive control coupled with reduced order (piece-wise affine) mod-

els in scheduling and control for continuous processes [33], and decomposition into separate prob-

lems for continuous processes [34]. Chu and You demonstrate the economic benefit of closed-loop

moving horizon scheduling with consideration of process dynamics in batch scheduling [25]. Chu

and You also investigate the reduction of computational burden to enable on-line closed-loop ISC

for batch and continuous processes. They investigate utilization of Pareto frontiers to decompose

batch scheduling into an on-line mixed-integer linear programming (MILP) problem and off-line

dynamic optimization (DO) problems [152]. Investigation of a solution via mixed-integer nonlin-

ear fractional programming and Dinkelbach’s algorithm coupled with decomposing into an on-line

scheduling and controller selection and off-line transition time calculation [24].

Closed-loop reactive ISC responds to process uncertainty in a reactive rather than preven-

tative manner [174]. Preventative approaches to dealing with process uncertainty in ISC have

also been investigated. Chu and You investigated accounting for process uncertainty in batch pro-

cesses in a two-stage stochastic programming problem solved by a generalized Benders decom-

position [154]. The computational requirements of the problem prevent on-line implementation.

Dias and Ierapetritou demonstrate the benefits of using robust model predictive control in ISC to

optimally address process uncertainty in continuous chemical processes [157].
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Table 2.2: Works Considering Reactive ISC

Authors Product Price Product Demand Process Variable Other

Disturbance Disturbance Disturbance Disturbances

Baldea (2017) [148] X

Cai et al. (2012) [149] X

Chu & You (2012) [24] X

Du et al. (2015) [35]

Flores-Tlacuahuac (2010) [30] X

Gutiérrez-Limón et al. (2016) [159] X

Kopanos & Pistikopoulos (2014) [172] X

Liu et al. (2012) [173] X X

Patil et al. (2015) [163] X

Pattison et al. (2017) [27] X X

Touretzky & Baldea (2014) [9]
Weather &

energy price

You & Grossmann (2008) [166] X

Zhuge & Ierapetritou (2012) [20] X

Zhuge & Ierapetritou (2015) [33] X

Responsiveness to Market Fluctuations

As mentioned in Section 2.1.1, a major consideration affecting the profitability of ISC

is rapidly fluctuating market conditions. If the market changes, the schedule should be reopti-

mized to new market demands and price forecasts. This is again congruent with recent work

demonstrating benefit from frequent re-scheduling [169–171]. Literature on ISC reactive to mar-

ket fluctuations is relatively limited in scope. Gutierrez-Limon et al. demonstrated integrated

planning, scheduling, and control responsive to fluctuations in market demand on a CSTR bench-

mark application [159, 160]. Pattison et al. investigated ISC with an air separation unit (ASU)

in fast-changing electricity markets, responding optimally to price fluctuations [26]. Pattison et

al. also demonstrated theoretical developments with moving horizon closed-loop scheduling in

volatile market conditions [27]. Periodic rescheduling to account for fluctuating market conditions

was implemented successfully on an ASU application.

2.1.3 Purpose of this Work

This work aims to provide evidence for the progressive economic benefits of combining

scheduling and control and operating combined scheduling and control in a closed-loop responsive

to disturbances over segregated scheduling and control and open-loop formulations for continuous
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chemical processes. This work demonstrates the benefits of integration through presenting four

progressive stages of integration and responsiveness to disturbances. This work comprehensively

demonstrates the progression of economic benefit from (1) integrating process dynamics and con-

trol level information into production scheduling and (2) closed-loop integrated scheduling and

control responsive to market fluctuations. Such a comprehensive examination of economic benefit

has not been performed to the authors’ knowledge. This work also utilizes a novel, computationally

light decomposed integration method employing continuous-time scheduling and nonlinear model

predictive control (NMPC) as the fourth phase of integration. Although the phases of integration

presented in this work are not comprehensively representative of integration methods presented in

the literature, the concepts of integration progressively applied in the four phases are applicable

across the majority of formulations in the literature.

2.2 Phases of Progressive Integration

This section introduces the four phases of progressive integration of scheduling and control

investigated in this work. Each phase is outlined in the appropriate section.

2.2.1 Phase 1: Fully Segregated Scheduling and Control

A schedule is created infrequently (every 24 hours in this work) and a controller seeks to

implement the schedule throughout the 24 hours with no other considerations. In this format, the

schedule is open-loop whereas the control is closed-loop. The controller acts to reject disturbances

and process noise to direct the process to follow the predetermined schedule (See Figure 2.1).

This work considers an NMPC controller and a continuous-time, slot-based schedule (Sec-

tion 2.2.5). For this phase, the schedule is uninformed of transition times as dictated by process

dynamics and control structure. All product grade transitions are considered to produce a fixed

amount of off-specification material and to require the same duration.
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Control Process

Rapid (Seconds)

Schedule

   Scheduling: open-loop

   Control: closed-loop

Infrequent 

(Hours/Days)

Measurement

Control Move

Sensor

Figure 2.1: Phase 1: Open-loop scheduling determined once per day with no consideration of

process dynamics. Closed-loop control implemented to follow the schedule.

2.2.2 Phase 2: Reactive Closed-loop Segregated Scheduling and Control

Phase 2 is a closed-loop implementation of completely segregated scheduling and control.

The formulation for phase 2 is identical to that of phase 1 with the exception that the schedule is

recalculated in the event of a process disturbance or market update.

2.2.3 Phase 3: Open-loop Integrated Scheduling and Control

For phase 3 the schedule is calculated infrequently, similar to phase 1 (every 24 hours in

this work). However, information about the control structure and process dynamics in the form of

transition times are fed to the scheduling algorithm to enable a more intelligent decision. Schedul-

ing remains open-loop while the controller remains closed-loop to respond to noise and process

disturbances while implementing the schedule.

This work considers a continuous-time schedule with process dynamics incorporated via

transition times estimated by NMPC. Transitions between products are simulated with a dynamic

process model and nonlinear model predictive controller implementation. The time required to

transition between products is minimized by the controller, and the simulated time required to
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Control Process

Rapid (Seconds)

Schedule

   Scheduling: closed-loop

   Control: closed-loop

Measurement

Control Move

Sensor

(Time-scale of disturbances)

Figure 2.2: Phase 2: Dual-loop segregated scheduling and control. Scheduling is recalculated

reactively in the presence of process disturbances above a threshold or updated market conditions.

Closed-loop control implements the schedule in the absence of disturbances.

Control Process

Rapid (Seconds)

Schedule 

Considering 

Process 

Dynamics

   Scheduling: open-loop

   Control: closed-loop

Infrequent 

(Hours/Days)

Measurement

Control Move

Sensor

Figure 2.3: Phase 3: Open-loop scheduling determined once per day with consideration of process

dynamics and control structure in the form of grade transition information. Closed-loop control

implemented to follow the schedule.
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transition is fed to the scheduler as an input to the continuous-time scheduling formulation (Section

2.2.5).

2.2.4 Phase 4: Closed-loop Integrated Scheduling and Control Responsive to Market Fluc-

tuations

Phase 4 represents closed-loop implementation of ISC responsive to both market fluctua-

tions and process disturbances. This work utilizes the formulation for computationally light on-line

scheduling and control for closed-loop implementation further explored in [142]. As in phase 3,

a continuous-time schedule is implemented with NMPC-estimated transition times as inputs to

the scheduling optimization; however, the ISC algorithm is implemented not only once at the

beginning of the horizon as in phase 3, but triggered by updated market conditions or process dis-

turbances above a threshold. This enables the ISC algorithm to respond to fluctuations in market

conditions as well as respond to measured process disturbances in a timely manner to ensure that

production scheduling and control are updated to reflect optimal operation with current market

conditions and process state.

Control Process

Rapid (Seconds)

ISC Algorithm

   ISC Scheduling: closed-loop

   Control: closed-loop

Measurement

Control Move

Sensor

(Time-scale of disturbances)

Figure 2.4: Phase 4: Closed-loop combined scheduling and control responsive to both process

disturbances and updated market information.
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This formulation builds on previous work which demonstrates the separability of the inte-

grated scheduling and control problem into subproblems without the need for iterations [34] and

builds on previous work which demonstrates the separation into MILP and dynamic optimiza-

tion problems [8, 23, 145]. This formulation also builds on previous work which demonstrate

benefit from shifting separable computational burden into off-line portions of the integrated prob-

lem [24, 32, 33, 155].

The formulation for phase 4 builds on the work of Zhuge et al. [33], which justifies decom-

posing slot-based ISC into two subproblems: (1) NLP solution of transition times and transition

control profiles and (2) MILP solution of the slot-based, continuous-time schedule. The approach

expands the work of Zhuge et al. by combining a look-up transition time table with control profiles

and transition times between known product steady-state conditions, calculated off-line and stored

in memory, with transitions from current conditions to each product. The transitions from current

conditions or most recently received process measurements are the only transition times and tran-

sition control profiles required to be solved at each iteration of combined scheduling and control

(Eqs. 2.2-2.8). This reduces the on-line problem to few non-linear programming (NLP) dynamic

optimization problems and a MILP problem only, eliminating the computational requirements of

MINLP. This work also introduces the use of nonlinear models in this form of decomposition.

Zhuge et al. use piecewise affine (PWA) models whereas this work harnesses full nonlinear pro-

cess dynamics to calculate optimal control and scheduling.

This work also builds on the work of Pattison et al., who demonstrate closed-loop moving

horizon combined scheduling and control to respond to market updates [27]. This formulation,

however, does not use simplified dynamic process models for scheduling, but rather maintains non-

linear process dynamics while reducing computational burden via problem decomposition into off-

line and on-line components and further decomposition of the problem into computationally light

NLP and MILP problems, solvable together without the need for iterative alternation [142].

The continuous-time scheduling formulation, as introduced in Section 2.2.5, will produce

sub-optimal results if the number of products exceeds the optimal number of products to produce

in a prediction horizon. The number of slots is constrained to be equal to the number of products,

causing the optimization to always create n production slots and n transitions even in cases in which

< n slots would be most economical in the considered horizon for scheduling and control. To elim-
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inate this sub-optimality, an iterative method is introduced to leverage the computational lightness

of the MILP continuous-time scheduling formulation. The number of slots in the continuous-time

schedule is selected iteratively based on improvement to the objective function (profit), beginning

from one slot. As previously mentioned, transition times and control profiles between steady-state

products are stored in memory, requiring no computation in on-line operation. Additionally, the

transitions from current measured state to each steady-state product (τ0′i) are calculated once before

iterations are initiated. Thus, the iterative method only iterates the MILP problem, not requiring

any recalculation of grade transition NLP dynamic optimization problems. This decomposition is

computationally light and allows for a fixed-horizon non-cyclic scheduling and control formula-

tion. This non-cyclic fixed-horizon approach to combined scheduling and control enables response

to market fluctuations in maximum demand and product price, whereas traditional continuous-time

scheduling requires a makespan (TM) to meet a demand rather than producing an optimal amount

of each product within a given fixed horizon.

2.2.5 Mathematical Formulation

This continuous-time optimization used in phases 1-3 seeks to maximize profit and min-

imize grade transitions (and associated waste material production) while observing scheduling

constraints. The objective function is formulated as follows:

max
zi,s,t

s
i ,t

f
i ∀i,s

J =
n

∑
i=1

Πiωi−
n

∑
i=1

cstorage,iωi

m

∑
s=1

zi,s(TM− t f
s )−Wτ

m

∑
s=1

τs

s.t. Eq.2.2−2.8

(2.1)

where TM is the makespan, n is the number of products, m is the number of slots (m = n in these

cyclic schedules), zi,s is the binary variable that governs the assignment of product i to a particular

slot s, ts
s is the start time of the slot s, t

f
s is the end time of slot s, Πi is the per unit price of product

i, Wτ is an optional weight on grade transition minimization, τs is the transition time within slot

s, cstorage,i is the per unit cost of storage for product i, ωi represents the amount of product i

manufactured,

ωi =
m

∑
s=1

∫ t
f
s

ts
s+τs

zi,sqdt (2.2)
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and where q is the production volumetric flow rate and τs is the transition time between the product

made in slot s - 1 and product i made in slot s.

The values of the vector τs are determined by the optimization variables zi,s. τs represents

the transition time between the product made in slot s - 1 and product made in slot s. Thus, the

value of τs is determined by the optimal values of z j,s−1 and zk,s which determine which products

are assigned to slots s− 1 and s. For z j,s−1 and zk,x, τs would be equal to the calculated grade

transition time from product j to product k. The possible values for τs are the grade transition

times calculated via NLP optimal grade transition problems (Eq. 2.9). The time points must

satisfy the precedence relations

t f
s > ts

s + τs ∀s > 1 (2.3)

ts
s = t

f
s−1 ∀s 6= 1 (2.4)

t f
m = TM (2.5)

which require that a time slot be longer than the corresponding transition time, impose the coinci-

dence of the end time of one time slot with the start time of the subsequent time slot, and define

the relationship between the end time of the last time slot (t
f
n ) and the total makespan or horizon

duration (TM).

Products are assigned to each slot using a set of binary variables, zi,s ∈
{

0,1
}

, along with

constraints of the form
m

∑
s=1

zi,s = 1 ∀i (2.6)

n

∑
i=1

zi,s = 1 ∀s (2.7)

which ensure that one product is made in each time slot and each product is produced once.

The makespan is fixed to an arbitrary horizon for scheduling. Demand constraints restrict

production from exceeding the maximum demand (δi) for a given product, as follows:

ωi ≤ δi ∀i (2.8)

43



www.manaraa.com

The continuous-time scheduling optimization (or MILP problem) requires transition times

between steady-state products (τi′i) as well as transition times from the current state to each steady-

state product if initial state is not at steady-state product conditions (τ0′i). These grade transitions

comprise the separable dynamic optimization problems or NLP portion of the overall problem

decomposition.

Transition times are estimated using NMPC via the following objective function:

min
u

J = (x− xsp)
TWsp(x− xsp)+∆uTW∆u +uTWu

s.t. nonlinearprocessmodel

x(t0) = x0

(2.9)

where Wsp is the weight on the set point for meeting target product steady-state, W∆u is the weight

on restricting manipulated variable movement, Wu is the cost for the manipulated variables, u is the

vector of manipulated variables, xsp is the target product steady-state, and x0 is the start process

state from which the transition time is being estimated. The transition time is taken as the time

at which and after which |x− xsp| < δ , where δ is a tolerance for meeting product steady-state

operating conditions. This formulation harnesses knowledge of non-linear process dynamics in

the system model to find an optimal trajectory and minimum time required to transition from

an initial concentration to a desired concentration. This method for estimating transition times

also effectively captures the actual behavior of the controller selected, as the transition times are

estimated by a simulation of actual controller implementation. This work uses W∆u = 0 and

Wu = 0.

Because product steady-state operating conditions can be known a priori, all grade tran-

sition times between production steady-state operating conditions can be calculated off-line and

stored in memory in a grade transition time table: τss. The on-line portion of the NLP subprob-

lem comprises only of the calculation of τθ , the transition duration and corresponding optimal

control profile from current measured state (xθ ) and each steady-state operating condition, or in

other words, the vector of possible transitions for the first slot (s = 0). For example, consider the

case of three products as described in Table 2.3. As product steady-state conditions are known a

priori as shown in Table 2.3, the transition times between product steady-states can be calculated
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through NLP problems (Eq. 2.9) and stored in a grade transition time table prior to operation

(Table 2.4). However, before operation, process state measurements (xθ ) cannot be known. For

example, if in the three product case described in Table 2.3 a process disturbance was measured

at xθ = 0.19mol/L during on-line operation, for an optimal rescheduling beginning from current

state xθ to be calculated, transition durations from xθ to each operating steady-state would need

to be estimated on-line by solving n separable NLP optimal grade transition problems, where n

is the number of steady-state products considered. The results of these on-line optimal transition

problems would be the vector τθ (Table 2.5). These transitions would be the possible values for τs

for the first slot (s = 0) in Eq. 2.1 for the MILP rescheduling problem.

Table 2.3: Product Specifications

Product CA

(mol/L)

1 0.10

2 0.30

3 0.50

Table 2.4: Transition Time Table (τss) *

Start End Product

Product 1 2 3

1 0.00 0.71 1.20

2 0.45 0.00 0.71

3 0.94 1.57 0.00

* Transition times in hours.

With τss and τθ grade transition information, the MILP problem is equipped to optimally

select the production sequence and amounts for the prediction horizon based on product demands,

prices, transition durations, raw material cost, storage cost, and other economic parameters. Even

when a process disturbance is encountered and measured, the schedule can be optimally recal-
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Table 2.5: Initial Transitions (τθ )

Product τθ

(hr)

1 0.31

2 0.43

3 0.96

culated from the measured disturbance, xθ , via the incorporation of transitions from xθ to each

production steady-state condition (τθ ).

2.3 Case Study Application

As shown in prior work, there are many different strategies for integrating scheduling and

control. A novel contribution of this work is a systematic comparison of four general levels of

integration through a single case study. In this section the model and scenarios used to demon-

strate progressive economic benefit from the integration of scheduling and control for continuous

chemical processes are presented.

2.3.1 Process Model

This section presents a standard CSTR problem used to highlight the value of the formula-

tion introduced in this work. The CSTR model is applicable in various industries from food/bev-

erage to oil and gas and chemicals. Notable assumptions of a CSTR include:

• Constant volume

• Well mixed

• Constant density

The model shown in Eqs. 2.10 to 2.11 is an example of an exothermic, first-order reaction

of A⇒ B where the reaction rate is defined by an Arrhenius expression and the reactor temperature

is controlled by a cooling jacket.

dCA

dt
=

q

V
(CA0−CA)− k0e−EA/RTCA (2.10)
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dT

dt
=

q

V
(Tf −T )−

1

ρCp
k0e

−EA
RT CA∆Hr−

UA

V ρCp
(T −Tc) (2.11)

In these equations, CA is the concentration of reactant A, CA0 is the feed concentration, q is the

inlet and outlet volumetric flowrate, V is the tank volume (q/V signifies the residence time), EA

is the reaction activation energy, R is the universal gas constant, UA is an overall heat transfer

coefficient times the tank surface area, ρ is the fluid density, Cp is the fluid heat capacity, k0 is the

rate constant, Tf is the temperature of the feed stream, CA0 is the inlet concentration of reactant

A, ∆Hr is the heat of reaction, T is the temperature of reactor and Tc is the temperature of cooling

jacket. Table 2.6 lists the CSTR parameters used.

Table 2.6: Reactor Parameter Values

Parameter Value

V 100m3

EA/R 8750K
UA

V ρCp
2.09s−1

k0 7.2e10s−1

Tf 350K

CA0 1mol/L
∆Hr

ρCp
−209Km3

mol

q 100m3/hr

In this example, one reactor can make multiple products by varying the concentrations of A

and B in the outlet stream. The manipulated variable in this optimization is Tc, which is bounded by

200K≤ Tc≤ 500K and by a constraint on manipulated variable movement as ∆Tc≤ 2K/min.

2.3.2 Scenarios

The sample problem uses three products over a 24-hour horizon. The product descriptions

are shown in Table 2.7, where the product specification tolerance (δ ) is ±0.05mol/L.

Three scenarios are applied to each phase of progressive integration of scheduling and

control:

1. Process disturbance (CA)

2. Demand disturbance
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Table 2.7: Product Specifications

Product CA Max Demand Price Storage Cost

(mol/L) (m3) ($/m3) ($/hr/m3)

1 0.10 1000 22 0.11

2 0.30 1000 29 0.1

3 0.50 1000 23 0.12

3. Price disturbance

Scenarios A-C maintain the specifications in Table 2.7 but introduce process disturbances,

demand disturbances, and price disturbances respectively (See Table 2.8). Scenario A introduces a

process disturbance to the concentration in the reactor (CA) of 0.15mol/L, ramping uncontrollably

over 1.4 hours. Scenario B introduces a market update with a 20% increase in demand for product

2. Scenario C shows a market update with fluctuations in selling prices for products 2-3. The start-

ing concentration for each scenario is 0.10mol/L, the steady-state product conditions for product

1.

Table 2.8: Scenario Descriptions

Scenario Time Disturbance

(hr) Product 1 Product 2 Product 3

A 2.2-3.8 ————– 0.15 mol/L —————

B 3.1 +0 m3 +200 m3 +0 m3

C 2.1 +0 $/m3 -9 $/m3 +6 $/m3

2.4 Results

The results of implementation of each phase for each scenario are discussed and presented

in this section. Each problem is formulated in the Pyomo framework for modeling and optimiza-

tion [58, 175]. Nonlinear programming dynamic optimization problems are solved via orthogonal

collocation on finite elements [176] and the APOPT and COUENNE MINLP solvers are utilized to

solve all mathematical programming problems presented in this work [177, 178]. For comparative

purposes, profits are compared to those of Phase 3 due to its centrality in performance.

48



www.manaraa.com

2.4.1 Scenario A: Process Disturbance

In Scenario A, Phase 1 has a poor schedule due to a lack of incorporation of process dy-

namics into scheduling. The durations of grade transitions, as dictated by process dynamics, are

unaccounted for. However, the production amounts or production durations for each product are

optimized based on selling prices. The order is selected based on storage costs, clearly leading

to longer grade transitions than necessary. The schedule maximizes production of higher-selling

products 2 and 3. Phase 1 does not recalculate the schedule after the process disturbance, holding

to pre-determined transition timing.

Phase 2 follows the same pattern as Phase 1 due to its lack of incorporation of process

dynamics. Phase 2 recalculates a schedule after the process disturbance, but because it does not

account for process dynamics, it cannot determine that it would be faster to transition to Product 3

from the disturbed process state than to return to Product 2. Thus, the production sequence remains

sub-optimal. However, the recalculated schedule enables more profitable Product 2 to be produced

than in Phase 1 as the timing of transition to Product 1 is delayed due to the disturbance by the

recalculation. Phase 2 illustrates benefit that comes from frequent schedule recalculation rather

than from scheduling and control integration.

Phase 3 does not react optimally to the process disturbance because it has a fixed schedule,

but its initial schedule is optimal due to the incorporation of process dynamics and the resul-

tant minimization of grade transition durations. Phase 3 illustrates benefit originating solely from

scheduling and control integration, without schedule recalculation. Phase 4 optimally reschedules

with understanding of transition behavior from the disturbed state to each steady-state operating

condition, transitioning to Product 2 immediately after the disturbance. Phase 4 demonstrates the

premium benefits of both reactive or frequent rescheduling and from scheduling and control inte-

gration.

2.4.2 Scenario B: Market update containing demand fluctuation

As in Scenario A, the production order for Phases 1-2 is sub-optimal due to a lack of

incorporation of process dynamics in scheduling, or a lack of integration of scheduling and con-

trol. Phase 2 improves performance over Phase 1 by reacting to the market update and producing
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(a) Phase 1: Segregated, Fixed Schedule
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(b) Phase 2: Segregated, Reactive Schedule

0 5 10 15 20
Time (hr)

0

200

400

600

800

1000

D
e
m
a
n
d
 (
m

3
)

Product 1

Product 2

Product 3

0 5 10 15 20
Time (hr)

0

200

400

600

800

1000

A
cc
u
m
u
la
te
d
 (
m

3
)

Product 1

Product 2

Product 3

0 5 10 15 20
Time (hr)

220
240
260
280
300
320
340
360
380
400

T
(K

)

Process Disturbance Cooling Jacket Temperature

0 5 10 15 20
Time (hr)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

m
ol
/L

No rescheduling Outlet Concentration

0 5 10 15 20
Time (hr)

300
320
340
360
380
400
420
440

T
(K

)

Reactor Temperature

(c) Phase 3: Integrated, Fixed Schedule
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(d) Phase 4: Integrated, Reactive Schedule

Figure 2.5: Scenario A: Process disturbance.
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Table 2.9: Results: Scenario A

Phase Description Profit Production (m3)
($) (%) Product 1 Product 2 Product 3

1 Segregated, Fixed Schedule 3114 (-38%) 367 858 908

2 Segregated, Reactive Schedule 3942 (-21%) 317 900 992

3 Integrated, Fixed Schedule 4983 (+0%) 308 1000 983

4 Integrated, Reactive Schedule 7103 (+43%) 308 1000 983

more profitable Product 2, which had a surge in demand, illustrating again the benefits of reactive

scheduling. Phase 3 integrates control with scheduling, resulting in an optimal initial schedule

minimizing transition durations. The benefits from integrating scheduling and control (Phase 3)

and the benefits of reactive scheduling (Phase 2) are approximately the same in Scenario B, dif-

fering in profit by only a negligible amount. However, incorporating both reactive scheduling and

scheduling and control integration (Phase 4) leads to a large increase in profits. The initial and

recalculated schedules in Phase 4 have optimal production sequence, utilizing process dynamics

information to minimize grade transition durations. Additionally, recalculation of the integrated

scheduling and control problem after the market update allows for increased production of the

highest-selling product, leading to increased profit.

Table 2.10: Results: Scenario B

Phase Description Profit Production (m3)
($) (%) Product 1 Product 2 Product 3

1 Segregated, Fixed Schedule 6033 (-19%) 367 967 908

2 Segregated, Reactive Schedule 7446 (+0.1%) 133 1200 908

3 Integrated, Fixed Schedule 7441 (+0%) 317 1000 992

4 Integrated, Reactive Schedule 8676 (+17%) 308 1200 800

2.4.3 Scenario C: Market update containing new product selling prices

As in Scenarios A-B, the production order for Phases 1-2 is sub-optimal due to a lack

of incorporation of process dynamics in scheduling. However, reactive rescheduling after the

price fluctuation information is made available results in a large profit increase from Phase 1 to
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Phase 2, demonstrating the strength of reactive scheduling even without scheduling and control

integration.

Phases 3-4 have an optimal production sequence due to the integration of scheduling and

control, leading to higher profits than the corresponding segregated phases. This illustrates again

the benefits of scheduling and control integration. Like Phase 2, Phase 4 reschedules when the

updated market conditions are made available, producing less of product 2 and more of products

1 and 3 due to the price fluctuations. This leads to a leap in profit compared to Phase 3. Phase 4

with both scheduling and control integration and reactive or more frequent scheduling is again the

most profitable phase.

Table 2.11: Results: Scenario C

Phase Description Profit Production (m3)
($) (%) Product 1 Product 2 Product 3

1 Segregated, Fixed Schedule 3758 (-16%) 367 967 908

2 Segregated, Reactive Schedule 4879 (+9%) 967 367 908

3 Integrated, Fixed Schedule 4466 (+0%) 317 1000 992

4 Integrated, Reactive Schedule 5662 (+27%) 1000 317 992

2.5 Conclusions

This work summarizes and reviews the evidence for the economic benefit from scheduling

and control integration, reactive scheduling with process disturbances and market updates, and

from a combination of reactive and integrated scheduling and control. This work demonstrates

the value of combining scheduling and control and responding to process disturbances or market

updates by directly comparing four phases of progressive integration through a benchmark CSTR

application and three scenarios with process disturbance and market fluctuations. Both ISC and

reactive rescheduling show benefit, though their relative benefits are dependent on the situation.

More complete integration (applying ISC in closed-loop control, rather than just the scheduling)

demonstrates the most benefit.
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(b) Phase 2: Segregated, Reactive Schedule
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(c) Phase 3: Integrated, Fixed Schedule
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(d) Phase 4: Integrated, Reactive Schedule

Figure 2.6: Scenario B: Market update (demand disturbance).
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(b) Phase 2: Segregated, Reactive Schedule
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(d) Phase 4: Integrated, Reactive Schedule

Figure 2.7: Scenario C: Market update (price disturbance).
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CHAPTER 3. COMBINED MODEL PREDICTIVE CONTROL AND SCHEDULING

WITH DOMINANT TIME CONSTANT COMPENSATION

This chapter was published as Beal, L. D., Park, J., Petersen, D., Warnick, S., and Heden-

gren, J. D., 2017. “Combined model predictive control and scheduling with dominant time constant

compensation.” Computers & Chemical Engineering, 104, pp. 271–282

3.1 Introduction

Time-of-day energy pricing for electricity and natural gas pose a challenge and opportunity

for industrial scale manufacturing processes. In many manufacturing processes in which Model

Predictive Control (MPC) is well-established, such as downstream refining and petrochemicals,

there is lost opportunity when advanced process control only operates at certain conditions but

must be turned off when unit production is lowered [51]. A challenge with changing production

rates is that the dynamics of a process often change dramatically with throughput. Empirical

models identified at high throughput rates are often inaccurate and lead to poor control performance

at low production rates. An opportunity with time-of-day pricing is to temporarily reduce the

consumption of energy-intensive processes for periods when the energy costs are sufficiently high.

During off-peak periods, the production rate is increased or more energy-intensive product grades

are produced to take advantage of low energy costs. With typical daily cycles in energy costs, a

cyclical operation forms that the original advanced control system may not be designed to follow.

When production targets are not set to maximize to production constraints, MPC may switch to

maximize energy efficiency or other secondary objectives. Set point targets traditionally come

from a real-time optimization (RTO) application that optimizes a steady state operating point for

the plant [144].

Segregated control and scheduling structure is historically due to computational factors

that limit application complexity [14]. As a result, the control and scheduling fields have grown
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independently and without coordination, leading to a loss of opportunity from combining the appli-

cations [143, 144]. By combining process scheduling of set points with control, the inefficiencies

of application layering are avoided. One such inefficiency that results from application layering is

the infeasibility on the control layer of individual solutions pass from the supervisory layer [19].

Scheduling applications frequently do not consider grade transition times because of the large com-

binatorial look-up table that would be required to consider all possible transitions. Additionally,

objectives of individual solutions can oppose each other. For example, the controller does not con-

sider the most economical route to reach a target set point given by the scheduler or steady-state

optimizer [16].

The computational barriers for combined control and scheduling are diminished with im-

proved computer hardware and adaptation of algorithms to the hardware. Algorithmic barriers

are being overcome with a number of key contributions that are opening several fronts of devel-

opment [57, 180]. Hardware or network resources such as multi-core, cloud-based, and graphics

processing units (GPUs) provide access to previously inaccessible computing power. However,

advanced architectures such as GPUs for optimization impose some limitations on the type of

problems that can be solved because the algorithms have not yet been adapted to take full advan-

tage of the architecture [181].

Economic MPC (EMPC) [53,182] uses an objective function that maximizes a profit func-

tion rather than targeting a set point as in standard MPC. Including the profit function directly in the

MPC application ensures that decisions are directly driven by economic considerations. The profit

function also provides guidance on product scheduling, although work on EMPC up to this point

has focused on single products. The drawback of this approach is that EMPC generally requires a

short time horizon such that the longer horizon required for scheduling constraints and objectives

cannot be met [53]. MPC for supply chain management [183] is an alternative strategy that extends

the control horizon to schedule product movement through a distribution network.

Dynamic Real-Time Optimization (DRTO) also has an economic objective function but

augments a steady state Real-Time Optimization (RTO) with select differential equations that cap-

ture the salient and dominant dynamics of a process [3,140,184]. One drawback of RTO is that the

process must be at steady-state [185] to perform data reconciliation. RTO has traditionally been

applied to processes that do not have grade transitions but are dominated by changing economics,
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disturbances, and slow dominant dynamics. With dynamics included, DRTO can be solved more

frequently than RTO applications and can be solved during periods of transient disturbances, dur-

ing startup, or during shutdown periods. RTO calculations are typically performed every hour

to every day while DRTO optimizes the transition between steady-state conditions. Like EMPC,

DRTO does not manage multiple sequential product campaigns as a scheduler.

Complete integration of scheduling and control requires an extended prediction horizon to

plan the production sequence as well as near-term control actions. Two integration approaches are

referred to as top-down (add control and dynamics to a scheduling application) or bottom-up (add

scheduling to a control algorithm) [14]. An early top-down implementation includes differential

and algebraic equations in the scheduling application [29]. Another method is the scale-bridging

model (SBM) in which a simplified model of process dynamics is embedded in the scheduling

application [21,22,35]. A benefit of this method is disturbance rejection [186]. Algorithms include

Benders’ decomposition [23] for problems that have a large-scale structured form and Dinkelbach’s

algorithm [24] for non-convex problems that require global optimization methods. Applications

of combined scheduling and control include batch processes [19, 147], polymer reactors [164],

parallel Continuously Stirred Tank Reactors (CSTRs) [30], and an electrical grid that responds to

current and future price signals [187].

Variable electrical pricing incentivizes reduced consumption during peak hours [188]. It is

desirable to match generation to consumption, but the adoption of more renewable energy requires

producers and consumers to respond to price signals [189–191]. Energy producers may expose

consumers to time-of-day pricing to discourage consumption during peak hours [192]. Scheduling

operation of chemical processing [4, 193], oil refining [194], and air separation [195] are some

examples of industrial units that can shed electrical load during peak hours, typically in the middle

of the day. Many cooling-limited processes also operate more efficiently at night [193]. Periodic

constraints can be used to optimize a typical daily cycle.

Prior work in scheduling and control integration has been centered around slot-based,

continuous-time scheduling formulations. The benefit of discrete-time formulation has been shown

[193]. However, the non-linear discrete-time formulation proved computationally difficult. The

purpose of this work is to restrict the dynamic model to linear form while capturing benefits of

the integration of scheduling and control. There is a large installed base of advanced controls that
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utilize linear models [51]. A unique aspect of this work is a time-scaling algorithm that adjusts the

linear dynamic model based on residence time calculations with a theoretical foundation for first-

order systems. The time-scaling approximation is applied to higher order, finite impulse response

models that are common in industrial practice. These linear models are used in the combined

scheduling and control application.

3.2 Time-Scaling with First-Order Systems

It is well known that linear MPC performance degrades with changes in the actual pro-

cess time constant or gain [196]. This effect has been quantified for MPC where there is model

mismatch in the time constant or gain of a first order system. A simple example is where the ac-

tual system is described by a single differential equation as τp
dy
dt

= −y+Kpu with a process time

constant of τp = 1 and a process gain of Kp = 1. An MPC controller with objective ∑
20
i=1 |yi− 5|

drives the response from a set point of 0 to 5. The controller model is similar to the process but

with variable model time constant of τm and gain Km in the equation τm
dy
dt

=−y+Kmu. Common

industrial practice is that acceptable MPC performance can be achieved with gain mismatch less

than 30% (0.7≤Km ≤ 1.3) and time constant mismatch less than 50% (0.5≤ τm ≤ 1.5) [196]. The

dominant time constant for many industrial processes is characterized by the volume (V ) divided

by the volumetric flowrate (q) as τp = V/q. The explicit solution to the first order equation is given

by Equation 3.1.

y[k+1] = exp

(

−∆t

τp

)

y[k]+



1− exp

(

−∆t

τp

)



 Kp u[k] (3.1)

where y is the output, u is the input, k is the discrete time step, and t is the time. The integrated

sum of absolute errors is computed for combinations of Km and τm, each between 0.1 and 5.0. The

3D contour plot shows the control performance over the range of time constant and gain mismatch

(see Figure 3.1(a)). A mismatch in the gain (x-axis) and time constant (y-axis) are plotted versus

the error. The vertical axis (z-axis) is the integrated absolute value of the objective function for a

set point change from 0 to 5. A lower sum of absolute errors equates to better control performance

with a minimum at Km = 1 and τm = 1 (no model mismatch) as shown in Figure 3.1(b).
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Figure 3.1: Performance degradation of MPC with model mismatch.

Especially poor performance occurs when the model has a higher time-constant (slower)

than the actual process. The model in MPC predicts that changes happen slower than are actu-

ally the case, leading to a controller that is more aggressive. This aggressiveness translates into

overshoot of the set point or even instability. Likewise, a model with a lower gain than the actual

process also exhibits poor control performance. The model predicts that larger changes in the Ma-

nipulated Variable (MV) are required to drive the process to the new set point. In reality, a smaller

adjustment is required and the over-reaction of the controller leads to overshoot and possibly in-

stability. A contour plot of the performance profile gives insight on the performance as shown

in Figure 3.2(a). Figure 3.2(b) shows the performance with the time-scaled model. The parallel

contour lines show that there is no performance degradation of the controller when τm changes

such as a production rate decrease or increase. The ability of the MPC to function over all produc-

tion rates is required for processes that respond to utility price or product demand signals. This

simple example shows the increased effectiveness over a wider range of operating conditions with

time-scaling while still preserving the linear model.

This result nearly agrees with industry observations, shown with dashed box in Figure 3.2.

Another feature of this result is that the combination of high mismatch in time-constant (τm) and

low mismatch in gain (Km) combine to form a region of poor control performance. Acceptable or

marginal performance is also possible if both τm and Km are both too high or too low. If there is
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Figure 3.2: Contour plot of performance degradation of MPC. An objective below 7 is acceptable,

between 7-30 is marginal, and above 30 (red line) is poor performance.

low mismatch in time-constant (τm) and high mismatch in gain (Km), the controller degradation is

manifest as sluggishness and only incremental moves in the MV but not instability.

The time scaling approach adjusts either the controller cycle time or the discrete model

time step based on the change in unit throughput q relative to the nominal throughput q̄. τ̄p is the

nominal time constant associated with q̄. The modified process time constant is τp = q×
(

τ̄p/q̄
)

which now has a linear relationship to q. If the process model is not easily adjusted, the cycle time

∆t of the controller is adjusted to ∆t×
(

q/q̄
)

to compensate for the changing process dynamics. For

first-order systems, this gives an exact representation of the nonlinear dynamics without modifying

the original linear model.

3.3 Selective Time-Scaling

Multi-variate and higher-order systems may have certain MV to CV relationships that are

known to scale with changing unit throughput while others are invariant to throughput changes.

Prior work has focused on decomposition of fast and slow dynamics [197] or variable time-delay

of measurements [54, 198]. For systems with multiple MVs and CVs, only the relationships that

are sensitive to throughput are scaled. These can be identified with a dynamic process simulator

or else by repeating plant identification tests at low and high production rates. A method to scale

higher order systems is to transform the linear time-invariant (LTI) model into discrete form. In
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discrete form, the sampling time is scaled by
(

q̄/q
)

and resampled to preserve the overall model

sampling time. As an example of this time scaling approach, consider the 7th order system given

by Equation 3.2 as a transfer function in terms of Laplace variable s.

G(s) =
CV (s)

MV (s)
=

1.5
(

s2 +0.6s+1
)

(0.5s+1)5
(3.2)

Suppose that the dynamics of this system depend on the production rate and that the feed

rate to the unit is reduced to half of the rate where the model is originally identified. When a time-

scaling transformation of q/q̄ = 2 is applied, the new transfer function is also a 7th order system but

with shifted dynamics. The steady state gain of the transfer function is preserved with this method

of dynamic transformation. The resulting transfer function is Equation 3.3.

G(s) =
CV (s)

MV (s)
=

1.5
(

4s7 +21.2s6 +47s5 +57s4 +42s3 +20s2 +6.2s+1
) (3.3)

The continuous transfer function is first converted to discrete form with a sufficiently small

sampling time. For this case, a sampling time of 0.5 sec is chosen for the continuous to discrete

transformation. The discrete model sampling time is set to 2 x 0.5 sec = 1.0 sec based on the

time-scaling factor and then the model is resampled to 0.5 sec to be consistent with other unscaled

MV/CV models. Continuous to discrete transformations and discrete model resampling for LTI

models are standard methods [199] and are not repeated here for the sake of brevity. A graphical

demonstration of this method is shown in Figure 3.3.

3.4 Scheduling and Control Formulation

An innovation of this work is to combine scheduling and control with linear models and

quadratic objective functions for fast solution with Quadratic Programming (QP) [200] or Nonlin-

ear Programming (NLP) solvers. There are multiple methods for formulating tiered price struc-

tures. The focus of this work is on creating mathematical expressions that have continuous first and

second derivatives and fit within the QP or a QP with Quadratic Constraint (QPQC) framework.

In contrast, most modern scheduling applications utilize integer variables, often as binary decision

variables. Including integers requires MILP or MINLP solvers, which are significantly slower and

more complex.
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Figure 3.3: Time-scaling of a 7th order system when the feed rate is reduced to half.

3.4.1 MPCC Steps for Product Pricing

The method uses a continuous formulation to logical decisions. It uses a Mathematical

Programs with Complementarity Constraints (MPCC) formulation to avoid binary variables that

would otherwise accommodate tiered pricing structures [201]. This formulation uses a step func-

tion MPCC, using constraints v0y = 0 and v1(1−y) = 0. v0 and v1 are positive slack variables. The

complementarity constraints force variables to their bounds – resulting in y being a binary variable

at its bounds [0,1].

This condition can be difficult for solvers to find a solution so the condition is typically

either solved as an equivalent inequality (v0y≤ 0), a relaxed inequality (v0y≤ ε), or included

in the objective function (min v0y) [202]. The step function MPCC that turns y from 0 to 1 at

switching point xp is shown in Equation 3.4a-3.4d.

62



www.manaraa.com

min
v0,v1,y

v0y+ v1 (1− y) (3.4a)

x− xp = v1− v0 (3.4b)

v1,v0 ≥ 0 (3.4c)

0≤ y≤ 1 (3.4d)

To preserve the QP structure, the complementarity constraints are included in the objective

function. If the complementarity constraints are included as inequalities a QPQC or NLP solver

must be used. With sufficient weighting, the complementarity constraints in the objective function

are zero at a final optimal solution but not necessarily along the search path to the solution. Being

zero at the solution, the complementarity constraints do not influence other objective terms such

as minimizing energy consumption or maximizing profit. The MPCC switching conditions are

combined to create a tiered product pricing structure as shown in Figure 3.4.
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Figure 3.4: Individual MPCC step functions are combined to create a continuous differentiable

expression of switching conditions.
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Each product has a different value and potentially a different width of specification limits.

The positive and negative step functions at different switching points are combined with pricing

information to create an objective function with multiple products. The individual steps are shown

in the upper subplot of Figure 3.4 while the summation of all steps is shown in the lower subplot.

Product A ranges from 0 to 1 and has a price of 1 per unit production. Product B ranges from 2 to

3 and has a price of 2 per unit production. Product C ranges from 2 to 3 and has the highest price

of 3 per unit production. The facility has a capacity of two units of production per hour and the

minimum amount of production for each product over a 7 hour time window is 2 units of A, 5 units

of B, and 3 units of C. Because C is the most valuable product, any spare capacity should favor the

production of C. In switching between products, a schedule should account for transition material

between grades that does not have value. The speed of a transition is limited by the maximum

move rate of the Manipulated Variable (MV ) of 1.6 per hour and the dynamics of the process. The

dynamics of the process are simply a linear first-order system as τ
d(CV )

dt
=−CV +MV with a time

constant τ of 1.0.

The grade-specific objective function with a quadratic objective, linear equation, and sim-

ple inequality constraints is added to the process model to optimize the timing of grade transition

switches. A complete statement of the QP optimization problem is shown in A. The series of three

products demonstrates a simple combined control and scheduling problem as shown in Figures 3.5

and 3.6. The cases have different initial conditions and constraints but the same underlying model.

The first case has an initial condition for CV of 0.0 at the lower specification limit for product A

while the second case starts at CV of 4.5.

The optimizer minimizes the amount of products A and B while meeting the minimum re-

quirements before transitioning to the next grade. This allows the schedule to favor the production

of C, the most profitable product. By minimizing the amount of products A and B, the scheduler

creates a plan that produces an extra unit of product C. The combined controller and scheduler

anticipates grade transitions by shifting the production specification to the upper limit to minimize

the transition time to the next grade. This is apparent at time 1.0 hr and 4.2 hr where the product

is already transitioning to the new grade just as the minimum required amount for products A and

B are produced. The combined scheduler and controller adjusts both the control actions as well as
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Figure 3.5: The control and scheduling optimization are combined to determine optimal MV move-

ment along with the optimal order and quantity of production for each grade.

the order in which the products are produced. In the next example, the initial condition is shifted

to a different starting location to demonstrate this feature of the approach.

The computational time is an important factor for control problems where the algorithm

must return a solution within the cycle time necessary to rejected disturbances and maintain process

stability. The fully discretized combined scheduling and control problem with 3 products and

discrete time points has 2730 variables, 1820 equations, and 910 degrees of freedom. The problem

is solved on a Dell R815 server with an AMD Opteron 6276 Processor and 64 GB of RAM.

The problem requires 8.6 s to converge with the APOPT solver (version 1.0) or 4.0 s with the

IPOPT solver (version 3.10). MPC commonly uses a warm-start from a prior solution to improve

efficiency. With a warm-start from the prior time-step, the optimizer requires 0.5 s with APOPT

and 3.0 s with IPOPT. Active-set solvers (such as APOPT) and interior point solvers (such as

IPOPT) are both effective for large-scale MPC applications although interior point solvers have

better performance as degrees of freedom increase [57].
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3.4.2 Dynamic Cyclic Schedule

A common method to optimize a schedule in current practice is to place products on a fixed

grade wheel where each product is visited sequentially in a rotation. The cyclic schedule visits all

grades in a forward and then a reverse order to end up at the original grade and begin the cycle

again. If there is a sudden demand for a particular grade out of sequence, the product wheel is

still typically traversed in the grade wheel order but there may be a minimal amount of the less

desirable grades in favor of the desired grade production. In some processes, such as polyolefin

production, there are multiple versions of the grade wheel. One version of the grade wheel may

include only commodity products while other wheels or sub-wheels may be a more complex cycles

that include less frequently produced products.

The contribution of this work is the discrete time, extended controller and scheduler that is

also able to produce a cyclic schedule. However, this cyclic schedule is not fixed but adjusts the

sequence of products automatically when updated economic or constraint information is available.

The schedule and control action may update every controller cycle (e.g. every minute). Some

constraints for scheduling are periodic boundary constraints where the final condition must be

equal to the initial condition, contracted quantities that must be produced by a certain date or time,

particular equipment limitation, or time-of-day transition constraints. An example of a time-of-day

constraint is that certain grade transitions need start-up or shut-down of auxiliary equipment. A

constraint may be that the grade transition should happen only during a weekday day-time shift

where there is adequate operator support.

The prior example problem is augmented with intermediate production targets and a peri-

odic constraint. The scheduler and controller, shown in Figure 3.6 produces an optimized schedule

and control actions. It is a dynamic rather than a static grade wheel because the order of product

production and quantity is re-optimized every cycle of the controller. The product order or quan-

tity may change based on changing customer demand, price signals for electricity or feed costs, or

disturbances that drive the system to a different state.

The optimized solution meets constraints as well as maximizes the production of product

C, the highest value product. The intermediate constraints originate from contracted delivery times

and storage capacity of a particular product. In this case, the storage capacity of all products is

less than 5 units of production. This requires two deliveries of product B that are scheduled at
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Figure 3.6: Optimized schedule with periodic condition, intermediate production targets, and final

production targets. The schedule and control actions adjust to meet constraints and maximize profit

(product C).

two equally spaced intervals of 5 hrs. The production of product C exceeds the required delivery

amount because it is the highest value product. Although the initial condition is at product C, the

controller immediately targets product B to meet the required delivery of 5 units of production at

5 hrs. Without the periodic constraint, production of product C would be maximized before tran-

sitioning because the scheduler evaluates the alternative that a transition back to product C results

in lost profit potential. However, with the required transition back to product C, the scheduler puts

excess production of product C at the end.

While this method is capable of producing cyclic schedules, the optimizer should begin

from current conditions rather than steady-state product conditions to fully integrate control and

scheduling. Cyclic schedules combined with online control may lead back to off-spec conditions

because of disturbances or because the controller is in a transition. Instead, this method is better

suited to a different set of constraints – production amounts and due dates. These constraints give

more freedom to the optimizer so the economic objective will improve or be equal to the solution

with periodic constraints.
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As with adding any constraint, there is potential to make the problem infeasible. Multi-

objective optimization statements, such as those used to refine a dynamic grade wheel sequence,

can also be posed with a rank-ordered set of constraints with an explicit prioritization of objec-

tives. The ℓ1-norm dead-band formulation is discussed in more detail in [57] and related to com-

bined scheduling and control production targets in Section 3.4.3. Posing the constraints as multi-

objective penalties versus hard constraints allows the problem to remain feasible yet still meet the

most important objectives in order of priority.

3.4.3 Acceptable Range of Production Quantity

One drawback to the prior examples is that all spare production capacity is typically placed

on the highest value product. Over-production of any product can have the effect of lowering the

selling price because of supply and demand market forces. In scheduling, there is often a range

of production quantity that is acceptable instead of just a single hard limit. To accommodate this,

the scheduling and control algorithm can use an ℓ1-norm objective function to give a target region

for the production quantity, rather than one specific hard limit. Equation 3.5 shows a generalized

ℓ1-norm control formulation used in this work.

min
x,CV,MV

Φ = wT
hiehi +wT

loelo + xT cx +MV T cMV +∆MV T c∆MV

s.t. 0 = f
(

d x
d t
,x, dCV

d t
,CV,MV

)

ehi ≥ x−dhi

elo ≥ dlo− x

(3.5)

In this formulation, Φ is the objective function, x is the production quantity per grade. Pa-

rameters wlo and whi are penalty matrices for solutions outside of the production target region. The

slack variable elo and ehi define the error of the dead-band low and high limits. Parameters cx, cMV ,

and c∆MV are cost vectors for the production quantity (positive values minimize production within

region, negative values maximize production within region), the MVs (positive values minimize

MV quantities such as energy use, negative values maximize MV quantity such as pump speed cor-

related to higher efficiency), and change of MVs, respectively. The function f is an open-equation
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set of equations as functions of x, CV , MV , and time derivatives of x and CV . The demand targets

dlo and dhi define lower and upper target limits for production.

This range formulation is not used in this work but is presented to demonstrate one of many

ways that this problem structure can be expanded to meet various scheduling needs.

3.5 Application: Continuously Stirred Tank Reactor

A continuously stirred tank reactor (CSTR) is a common benchmark used in nonlinear

model predictive control and scheduling applications [14, 185, 193]. This nonlinear application is

used to demonstrate the strength of the approach to time-scale based on throughput and combined

scheduling & control.

The linear time-scaled model changes dynamics based on reactor flow rate, allowing linear

MPC to be used instead of nonlinear MPC. The multi-product scheduling objective is used instead

of a simple target tracking to combine the scheduling and control into one application. Rapid

convergence is ensured with a linear model and quadratic objective because the problem is convex

and because QP solvers are efficient for large-scale systems.

The CSTR application is highly nonlinear because of an exothermic reaction that has the

potential to cause rapid reaction of stored reactant and thereby cause a temperature run-away.

The CSTR shares characteristics of many industrial processes such as polymer reactors or many

refining processes but with much simpler mathematics that are amenable to demonstrating a new

approach for control and scheduling. The liquid full reactor is used to convert compounds A⇒ B

with constant liquid density (ρ) and heat capacity
(

Cp

)

as shown in Figure 3.7.

The reaction kinetics are first order and irreversible. Reaction of A to B is exothermic with

the potential for temperature run-away because of the exponential dependence of reaction rate

on temperature, typical of an Arrhenius form for reaction rates. The reactor is well-mixed with

reactor concentration and temperature equally distributed and also equal to the outlet measured

values. The reactor temperature is regulated with a cooling jacket liquid temperature, Tc. The

cooling jacket temperature is normally regulated by adjusting the rate of cooling or the coolant

flow rate but in this model the jacket temperature is assumed to be controlled directly and the

dynamics are approximated by a maximum rate of change.

69



www.manaraa.com

q   Tf   CA0

Cooling Jacket 

Temperature (Tc)
q   T   CA   CB

Exothermic

Reaction

A B

Cooling

Jacket Volume (Vjacket)

Heat Transfer

UA(Tc-T)

Liquid Full

Volume (V)

Well Mixed

Figure 3.7: Diagram of the well-mixed and liquid-full CSTR. The A⇒ B reaction is exothermic

and controlled by a cooling jacket fluid.

The dynamics of the CSTR are dictated by a species and energy balance as shown in Equa-

tions 3.6-3.7 and in Figure 3.8.

V
dCA

dt
= q(CA0−CA)− k0 V e

−EA
RT CA (3.6)

ρCpV
dT

dt
= qρCp(Tf −T )− k0 V e

−EA
RT CA∆Hr−UA (T −Tc) (3.7)

where V is the volume of the reactor, CA is the concentration of reactant A, q is the volumetric

flowrate, CA0 is the inlet concentration of reactant A. The energy balance includes terms UA as an

overall heat transfer coefficient times the tank surface area, Cp as the reactor fluid heat capacity, ρ

as the fluid density, Tf as the temperature of the feed stream, T as the temperature of reactor, and Tc

as the temperature of cooling jacket fluid. Terms related to the reaction include ∆Hr as the heat of

reaction, EA as the activation energy, R as the universal gas constant, and k0 as the pre-exponential

factor. Table 3.1 lists the CSTR parameters and the associated values.

A regression is shown with varying orders for an Output Error (OE) time-series model in

Figure 3.8. Second and third order models have nearly the same fit to the nonlinear regression
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Table 3.1: Reactor Initial Conditions and Parameter Values

States Description Initial Condition

CA Concentration of reactant A 0.1 mol
L

CB Concentration of product B 0.9 mol
L

T Reactor temperature 386.82 K

Manipulated Variables Description Initial Value

Tc Cooling jacket temperature 300 K

Parameters Description Value

q Volumetric flowrate 12 m3/hr

V Tank volume 40m3

CA0 Feed concentration of reactant A 1mol
L

UA Overall heat transfer coefficient 5000 W
K

Cp Heat capacity of reactor fluid 0.239 J
kg K

ρ Density of reactor fluid 1000 kg

m3

Tf Feed temperature 350 K

∆Hr Heat of reaction (exothermic) −11.95 MJ
mol

k0 Pre-exponential factor, rate constant 1.8e10 1
hr

EA/R Activition energy divided by R 8750K

while a first order model is insufficient in capturing the process dynamics. A second simulation is

performed with the production rate reduced from 12 m3/hr to 6 m3/hr.
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Figure 3.8: Step tests in the jacket cooling and linear model regression of the step response.
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The concentration response of the reactor at half production rate is shown in the bottom

subplot of Figure 3.8 with the second order time-scaled model that originally fit with simulated

data from the full production rate simulation. The time-scaled approach is effective at capturing

the essential process dynamics without re-fitting a process model at low rates.

One reactor makes multiple products by varying the concentrations of A and B in the re-

actor. The cooling jacket temperature Tc is the manipulated variable in this optimization. The

production rate of the reactor changes throughout a typical 24-hour period because of time-of-day

pricing that necessitates a cut-back of production during peak energy prices and when cooling ca-

pacity is limited. The production rate is modified by adjusting the total flow through the reactor

(q) between half-rates at 6 m3

hr
and full-rates at 12 m3

hr
.

There is demand for three products with quantities that must be met in the schedule over a

48-hour horizon. The product descriptions and quantities are shown in Table 3.2.

Table 3.2: Product Summary with Demand and Price

Product CA Demand Price

(mol/L) (m3) ($/m3)

P1 0.12±0.01 120 9

P2 0.25±0.01 130 11

P3 0.35±0.01 150 6

The most valuable is product P2 while the least valuable product is P3. Although P3 has

the lowest price, it also has the highest required quantity. Spare capacity in the production facility

favors product P2. A potential drawback to always switching to P2 at the end of a campaign is

that there is lost material during the transition back to P2. An improved strategy is to make excess

P2 when the schedule requires it to meet a minimum target demand instead of transitioning back

to P2 near the end of the time period. The combined control and scheduling solution is shown in

Figure 3.9 over a 48 hour time period with 6 minute time intervals. The problem is discretized

with orthogonal collocation on finite elements. Each 6 minute segment is integrated with Radau

quadrature. The resulting QP or QPQC problem is solved with a nonlinear programming solver

with a simultaneous solution of the objective and equations. If specific control action is needed at

more frequent intervals, the first steps of the horizon could be adjusted to meet a required controller
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cycle time. This would develop a near-term move plan and simultaneously solve the scheduling

optimization problem with one application. The feed flow rate is decreased to half each day be-

tween the hours of 08:00 and 18:00 as is done with some energy intesive processes that exploit

time-of-day electricity pricing. The addition of production rate as a decision variable and the asso-

ciated cooling contraints is outside the scope of this work because the model becomes nonlinear.

The simultaneous control and scheduling of production rate and product grade sequence is the

topic of a future publication (see [193] for preliminary results). The top sub-plot is the sequence

of control moves to drive the system to produce on-spec products and transition between products.

The middle sub-plot shows the grade specifications and the concentration in the reactor. The bot-

tom sub-plot is the total production of each grade with the minimum required as indicated by the

circle markers at hour 48. The production rate is non-zero during transition periods because the

total rate includes production of off-spec as well as on-spec grade material.
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Figure 3.9: Combined control and schedule optimization results.
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The control influences the scheduling solution and the scheduling solution gives the con-

troller target values. The controller adjusts the jacket temperature (Tc) to minimize the transition

time between grade specifications and remain within the grade limits. The controller response

improves with knowledge of the scheduling targets because pro-active pre-transition movement

shows that the product specification are pushed to an upper limit right before the transition begins.

One factor that affects the schedule is the speed of the transition from one product to another. The

control dynamics are due to limitations in the manipulated variable movement and the process dy-

namics affecting the speed of attaining concentration range. The speed of the control response is

factored into the schedule as lost production time when transition (off-spec) material is produced.

Blending of transition material is one strategy to dilute the off-test material in prime products. This

strategy is not considered in this approach but could be included as a constraint on the amount of

reblend fraction that is allowed in the final product.

The scheduling profit function is an application and adaptation of Equations 3.4a-3.4d.

Figure 3.10 displays the slack and step function for each of the product limits along with the

overall profit function.

The slack variables and complementarity conditions combine to create discrete steps with

a function that has continuous first and second derivatives. For this problem, the complementarity

constraints were included as constraints and in the objective function to assist the optimizer and

ensure binary decision variables. The transition time to each product is not specified beforehand

but is a result of the optimization solver finding a sequence of grade transitions that maximize

overall profit. The individual steps of Figure 3.10 occur when one of the product grade limits is

crossed. One of each of the slack variables for each step is non-zero before or after the step. The

slack variables guide the solver with a continuous form of a discrete grade switching function. The

overall solution is intuitive because the optimizer produces excess product P2 (highest volumetric

price) but meets only the minimum production quantities for the lower value products (P1 and

P3).

A weakness of this method is that the CSTR is nonlinear but the solution is computed with a

linearized model. Linearization neglects features of the process that may be optimized if a suitable

process model more accurately represented the physical process. A key contribution of this work

is that the solution to the combined control and scheduling problem is relatively computationally
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Figure 3.10: Profit function and individual step functions for each product.

inexpensive in comparison to a full nonlinear solution. In this case, the linearized model with time-

scaling has a total of 22,048 variables and 16,640 equations and is solved on a Dell R815 with an

AMD Opteron 6276 Processor and 64 GB of RAM. After initialization, the problem requires 23.7 s

to converge with the IPOPT solver. This is representative of the cycle time of the application as

it repeatedly solves to reject disturbances and as new objective information or demand constraint

information is available. This speed, coupled with the inclusion of a process model sufficient for

control, allows this formulation to be utilized for on-line control, on top of providing an advanced

schedule. This is the epitome of combining scheduling and control – a fully unified optimization

that can replace both layers.
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A nonlinear version of this application is future work that will be reported in a subsequent

publication. A key difference with the full nonlinear solution is that the solution in this work is

several orders of magitude faster because of the quadratic objective and linear time-scaled model.

Although combined scheduling and control with linear models or feedback linearization does not

always accurately predict a highly nonlinear system, the linearized solution is a valuable starting

point to initialize a nonlinear solution. Also, many processes are not highly nonlinear and this

approach is likely suitable for systems that are already controlled with linear MPC.

3.6 Conclusion

A combined scheduling and control application is enabled by an MPCC objective function,

discrete-time, and linear time-scaling of process dynamics based on production rate changes. The

objective of this work is to extend traditional linear MPC applications with a scheduling objective

that allows for rapid convergence for real-time applications. One drawback of this work is that

nonlinearities are not included in the application. These nonlinearities are the subject of future

work. The method is tested on a CSTR application that includes three grades over a 48 hour

time horizon with 6 minute time intervals. The embedded controller simulates realistic transition

times between each of the products. The scheduling objective determines the order and quantity

of production at each grade even with half-rate reduction during peak electricity demand. The

formulation is sufficiently fast enough, and includes enough process dynamics, to be utilized in

on-line control. This presents a fully unified optimization that fulfills the roles of, and can replace,

both control and scheduling for a comparable system. Although the method is demonstrated on

the CSTR application, this formulation can be applied to other systems by replacing the model,

pricing structure, and constraints of the scheduler.
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CHAPTER 4. INTEGRATED SCHEDULING AND CONTROL IN DISCRETE-TIME

WITH DYNAMIC PARAMETERS AND CONSTRAINTS

This chapter was published as Beal, L. D., Petersen, D., Grimsman, D., Warnick, S., and

Hedengren, J. D., 2018. “Integrated scheduling and control in discrete-time with dynamic param-

eters and constraints.” Computers & Chemical Engineering, 115, pp. 361 – 376

4.1 Introduction

Current process control and optimization strategies are typically divided into major sections includ-

ing base layer controls, advanced controls, real-time optimization, scheduling, and planning [144].

Each of these levels works at a different time scale, ranging from milliseconds to seconds for base

controls, up to weeks or months at the planning level.

Each of these levels receives a minimal amount of information to fulfill an objective to

simplify models and decrease computation time. However, the lack of information communicated

between the levels creates lost opportunities. For example, scheduling problems have historically

focused on the quantity and time-line of product manufacturing, without much knowledge of the

dynamics of the manufacturing process. Thus, the “optimal” solution determined in scheduling

is sometimes impossible to implement in practice within the required time to transition between

products in continuous manufacturing [19]. Further, the objectives of different manufacturing

layers can sometimes counter each other. For example, a control goal to reach a set point could

potentially conflict with a scheduling goal to maximize profits [16].

This segregated manufacturing structure is largely an artifact of the development of process

control and computational limits during these developmental periods [14]. Thus, each level has

developed within an isolated domain, without much inter-level coordination, sometimes at the

expense of truly optimal solutions [14].
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4.1.1 Economic Model Predictive Control and Dynamic Real Time Optimization

With ever-increasing computational power, the segregation of optimization is being re-

analyzed through efforts such as model predictive control for supply-chain management [183],

combined nonlinear estimation and control [180, 203], dynamic real-time optimization (DRTO)

[3, 140, 184], and economic model predictive control (EMPC) [53, 204]. These past efforts have

proven valuable in practice [144].

DRTO has an economic objective function similar to that of a scheduler. DRTO is solved

more frequently than scheduling problems and leverages the predictive power inherent in a dy-

namic first-principles model to calculate intermediate set points used by MPC for optimal product

transitions [3, 53].

EMPC mixes the benefits of the optimization layers with an objective function centered

around profit or reducing operating expenses, rather than reaching a setpoint, and is therefore sim-

ilar to a scheduler. However, EMPC uses a very short time horizon like MPC [53]. However,

both EMPC and DRTO only consider one product at a time, and therefore do not replace a sched-

uler.

Other researchers are more fully integrating control and scheduling (SC) in an attempt to

achieve even more optimal solutions. Suggestions for, and early implementation of, fully combined

scheduling and control go back at least a decade [29].

4.1.2 Integrated Scheduling and Control and Computational Capacity

The benefits of integrated scheduling and control have been explored extensively in re-

cent work, and algorithms and technology which further enable these large-scale problems have

been steadily advancing during recent years. Today, both computing power and algorithms have

advanced so far that nonlinear programming problems (NLPs) with over a million variables can

be solved [2]. Not only have solvers grown in capacity, but also in speed [184]. These develop-

ments and potential for future growth in algorithm capacity and speed prompt investigation of a

new paradigm of integrated scheduling and control which could lead to improved process solutions

through more complex problem formulations.
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Previous Work

Extensive research has been performed in the new field of integrated scheduling and con-

trol. Multiple review articles have been written on the topic of integrated scheduling and control,

ranging from reviews on integration feasibility to addressing uncertainty in the integrated prob-

lem [15–17,157,205]. Some researchers have investigated incorporating explicit process dynamics

in the scheduling model with differential and/or algebraic constraints [29], even for multi-product

parallel continuous stirred tank reactors (CSTRs) [30]. Multi-objective optimization approaches

have also been investigated for combined scheduling and control of CSTRs [158]. Another ap-

proach called the scale-bridging model (SBM) uses a simplified model that encompasses most of

the important dynamics that can be used in the scheduling framework [21, 22, 35].

Predictive control system integration into refinery scheduling models has been investi-

gated [206]. Integrating scheduling and control has been shown to optimize transition times in

a polymerization reactor model, although the optimization problem grows rapidly with an increas-

ing number of products [164]. Combined scheduling and controller selection for optimal grade

transitions in polymerization processes has also been investigated [146, 151]. Closed-loop imple-

mentation of simultaneous scheduling and control has been shown to effectively re-calculate an op-

timal schedule in the presence of significant disturbances [20]. Fast model predictive control [33]

and dual feedback structures [25] have been proposed to reduce the computational requirements

of on-line, closed-loop implementation of combined scheduling and control. A traveling salesman

approach has also recently been suggested [207].

Some researchers employ decomposition techniques to the SC problem. Past research in

this field includes segregating production sequence and product demand [34], applying Benders’

decomposition framework to particular problems [23, 153, 154], using Dinkelbach’s algorithm to

find a global optimum in on-line implementations [24], and using Lagrangian heuristic decompo-

sition to reduce the computational burden of the combined problem [31].

Some researchers have explored the integration of scheduling and control in batch pro-

cesses. The possibilities of direct inclusion of process dynamics into batch scheduling was first

discussed over a decade ago [208]. Recent research continues to explore integrating process dy-

namics into batch scheduling [19]. Multi-parametric model predictive control [32], state equip-

ment networks [147], and two-phase (off-line and on-line) architectures [209] have been applied
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to integrate scheduling and control for batch processes. Chu and You investigated scheduling and

control in batch processes, investigating moving horizon approaches [25], decomposition through

surrogate modeling [155], and decomposition into a bi-level problem solvable with a game theory

approach [156].

Work has also been done to integrate design, scheduling, and control [161, 163, 165] as

well as to integrate planning, scheduling, and control [159, 160]. Several review articles have

outlined organizational and other challenges to integrating scheduling and control in chemical

processes [14–16,157]. This work considers the simultaneous integration of scheduling and control

for multi-product continuous chemical processes.

4.1.3 Demand Response

Demand response (DR) is an illustrative example of the benefit of considering dynamic

constraints and parameters in SC optimization for chemical processes. As the electrical grid tran-

sitions to a smart grid and dynamic electricity prices become available, stakeholders are being

empowered to perform more informed energy transactions [187, 189, 190]. Along with residential

and commercial systems, industrial systems are among those that can increasingly take advantage

of the variable price of electricity [210].

Demand response seeks to manage both volatile demand and renewable energy in order

to increase efficiency of the electrical grid. DR incentivizes consumers to behave in ways that

benefit the electrical grid as well as themselves by utilizing variable pricing to reduce consumption

during peak hours when the reliability of the grid is jeopardized [188]. Generation should match

consumption in order to maintain grid reliability [194]. DR is a major reason why variability

of energy prices is expected to increase [192]. Industrial manufacturing processes can benefit

from DR by decreasing energy consumption when the cost of electricity is high and increasing

consumption when electricity costs are low. The possibility of demand-side pricing and constraints

in energy markets creates new opportunities to achieve economic benefit from SC in chemical

processes [15].

Although residential consumers make up the largest portion of electrical grid consumers,

tremendous opportunities exist for industrial participants [194]. Previous efforts to quantify the

benefits of DR for the industrial sector include petroleum refining [194], chemical processing [4],
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gas production (Air Separation Unit) [195], aluminum smelting [211], and steel production [212].

The idea that chemical processes can be used as a “battery” to store energy from the grid generated

during non-peak hours in the form of chemical products was introduced by Baldea [148]. He

discusses methods to enable chemical process operators to interact optimally with utility operators

to enable effective DR. Mendoza-Serrano and Chmielewski [194] introduce the concept of using

economic model predictive control (EMPC) to respond to demand in electric power systems, using

a refinery as an example application. Xu and Wang [213] investigate a feedback control approach to

address energy consumption in a job-shop scheduling problem. Tong et al. [210,214] incorporates

chemical process dynamics in formulations accounting for DR in chemical process scheduling and

control. Tong et al. account for process dynamics during transition periods and incorporate DR

in their objective; however, the process is considered at steady-state during production periods,

not allowing the optimization to alter operation during production periods to respond to dynamic

constraints and dynamic energy price. Additionally, Tong et al. consider parameter tuning for

linear controllers rather than utilizing nonlinear model predictive control in the SC formulation

[214]. The SC problem is decomposed into a scheduling problem with constant transitions and a

control problem (optimal parameter tuning). The authors mention the results are sub-optimal, but

are progress toward true optimality.

This work utilizes a case study of a CSTR model with a first-order, irreversible reaction to

illustrate the benefits of adjusting operations based on periodic electricity price changes. Moreover,

periodic effective maximum cooling is added to the model. During the heat of the day, effective

maximum cooling is reduced compared to night-time operation. To simulate these dynamic cool-

ing and price conditions, periodic constraints of both effective maximum cooling and electricity

price are utilized in the optimization. The discrete-time optimization is able to adjust manipu-

lated process variables throughout the entire horizon to respond to these dynamic energy price and

dynamic cooling constraints.

4.2 Problem Formulation in Discrete-time

Typical scheduling optimization seeks to maximize profit (P) by changing scheduling vari-

ables (xs) such as the order of products, subject to scheduling constraints such as demand, pro-

duction rate, storage costs, etc. There are two main types of models for scheduling of chemical
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processes: discrete-time and continuous-time [215]. The majority of previous work on integrated

scheduling and control utilizes continuous-time scheduling formulations with integrated process

dynamics to enable dynamic optimization of both scheduling and control [21–25, 27, 29, 30, 32–

35,158,168,186]. Recent work also demonstrates the possibilities of using discrete-time formula-

tions to integrate scheduling and control [37, 38, 162]. To account for dynamic process constraints

and dynamic scheduling parameters (e.g. dynamic market conditions), this work utilizes a fully

discrete-time method for the integrated scheduling and control problem. The discrete-time formu-

lation enables dynamic constraints and dynamic market conditions to be considered in integrated

optimization of both production sequence and process operation during and between production

slots, enabling optimization of effective demand response during production periods, effective op-

timization of grade transition timing, and effective optimization of process control during both

production and transitional periods. A generalized scheduling optimization is shown in Equation

4.1, where time is discrete.

maximize
xs

P(xs,y, t)

subject to scheduling constraints

(4.1)

Unlike scheduling which considers economic constraints but not process dynamics, MPC

includes process dynamics but inherently contains no economic considerations. MPC drives a

process to a setpoint by manipulating process variables (xc) such as flow rates, subject to the

process model (e.g. reaction rates, mass balance), generalized by Equation 4.2, where time is

discrete.

minimize
xc

∥

∥ymodel− ysp

∥

∥

subject to process model

(4.2)

EMPC adjusts MPC by maximizing profit (P) rather than minimizing error to a setpoint us-

ing the same dynamic process model. The economic objective is reminiscent of a scheduler.

maximize
xc

P(xc,y, t)

subject to process model

(4.3)
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By combining the constraints from EMPC (the process model) and the scheduling op-

timization (scheduling variables such as prices and demand), with an economic objective func-

tion over the same discretized time horizon, a fully unified control and scheduling optimization is

achieved.

However, schedulers do not consider the same set of process variables that a controller

process model considers. Thus, a link is required between scheduling variables and process vari-

ables. Namely, linking a product on/off binary variable (Bi,t , representing production of product i

at time t) from typical scheduling formulations to the associated process variable (yp), as defined

by product specifications. Production (B) is typically a binary variable while process variables

are typically continuous. Since most product specifications include a tolerance, this linking can

be done through a step function. Figure 4.1 shows this relationship for a sample product whose

specification is x = 1.5 with a tolerance of 0.5.
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Figure 4.1: A generic linking function between the continuous process specification variable x and

the binary scheduling variable for the associated product b.

With the linking function in place, economic optimization based on both scheduling and

control economics is possible with both a process model and scheduling constraints, as shown in

Equation 4.4. This is the proposed paradigm of combined scheduling and control explored in this

work.
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maximize
xs,xc

P(xs,xc,y,B)

subject to scheduling constraints

process model

linking function B(yp)

(4.4)

The formulation in this work consists of a large-scale set of nonlinear differential and al-

gebraic equations (DAE) that describe a MIDO problem. The continuous horizon of the problem

is discretized by orthogonal collocation onto finite elements (see Figure 4.2), becoming a large

system of algebraic equations containing binary variables Bi,t , which determine the current on-

specification production of each product i at time t.

Time

Input (u)

Variable (x)

Figure 4.2: Variables are discretized over a horizon onto finite elements by orthogonal collocation.

The objective function is shown in Eq. 4.5, where B is the binary variable that determines

if product i is produced at time t, Π is the price of product p, q is the rate of production at time t,

n is the number of finite elements, and O is the operational expenditure at time t.

maximize
n

∑
t

[

n

∑
i

(qtΠiBi,t)−Ot

]

(4.5)

This discrete-time SC formulation is inherently able to account for dynamic constraints and

parameters throughout a prediction horizon by modifying constraint or parameter values at each

84



www.manaraa.com

finite element across the horizon. This improves upon continuous-time, slot-based formulations in

which a system is traditionally considered steady-state or constant during production periods, rul-

ing out the possibilities for consideration of dynamic constraints or parameters during production

slots [210].

4.2.1 Linking Functions

The full discrete-time integrated scheduling and control problem accounting for full non-

linear process dynamics presented in this work produces a complex and difficult mixed-integer

nonlinear (MINLP) problem. Fine-time resolution of the discrete-time SC problem dictates a

large number of integer variables Bi,t . However, on-line or frequent implementation of integrated

scheduling and control is beneficial for rejecting process disturbances and responding effectively to

market fluctuations [14, 15, 20]. This requires a sufficiently light computational time requirement

for the SC problem.

To reduce the computational requirements of the nonlinear discrete-time problem account-

ing for nonlinear process dynamics, this work recommends continuous relaxations of the linking

function (or a “pseudo-binary” approach) to ease the computational requirements of the MINLP

problem to enable solution via gradient-based NLP. This section provides various options for link-

ing functions. A few selected methods are tested on the SC problem (Equation 4.4) with sample

results of profit and solution time reported.

The first recommended linking function (a “hard constraint”) could be formulated as shown

in Equation 4.6 or 4.7, where spec is the product specification with tolerance tol. In this form, B is

zero outside of product specs, but will be driven to one (the upper variable bound) by the economic

objective function when on spec —effectively producing a step in B. These constraints are simple

and linear or quadratic.

B(|spec− x|− tol)≤ 0, B ∈ [0,1] (4.6)

B((spec− x)2− tol2)≤ 0, B ∈ [0,1] (4.7)

Similarly, mathematical programming with complementarity constraints (MPCC) can be

used to simulate a step function by combining two modified “signum” MPCC formulations, as
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shown in Equation 4.8 [38]. This formulation provides derivatives for the solver to seek out

the product and B is fixed at one when on-spec through constraints rather than objective func-

tion encouragement. However, mathematical programming with equilibrium constraints (MPEC)

naturally include dependent active inequality constraints which add significant difficulty for the

solver (although this can be partially resolved through structured regularization [216]). Further,

this method introduces six slack variables (s) per product, per time discretization. All the slack

variables must be positive and s5 and s6 must additionally be less than or equal to one.

x− spec− tol = s1− s2 (4.8a)

x− spec+ tol = s3− s4 (4.8b)

s1 ∗ (1− s5)+ s2 ∗ s5 ≤ 0 (4.8c)

s3 ∗ (1− s6)+ s4 ∗ s6 ≤ 0 (4.8d)

B = s6− s5 (4.8e)

In contrast to these binary methods, we also present continuous relaxations to the binary

step function (or a “pseudo-binary” approach). For example, Eq. 4.9 provides a continuous gradi-

ent with immediate objective function benefit for the solver to recognize the location of products

with respect to process state x. In Eq. 4.9a, h represents the max height of the function and must

exceed 1. In this format, f exceeds 1 in the range of product specifications and is within [0,1]

elsewhere.

f (x) = h10log(1/h)/tol2(spec−x)2
(4.9a)

B(x)≤ f (x), B ∈ [0,1] (4.9b)

Low values of h present a short, wide hill with clean, far-reaching gradients. To force a

square function like a true binary variable, h is increased so f goes to 0 outside the product spec-

ifications. Then, through Eq. 4.9b, the function is capped at 1. The economic objective function

maximizes B to 1 whenever the concentration is within the associated product specification. Figure
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4.3 shows the resulting linking function, demonstrating the wide reach provided by low values of

h to the steep binary approximation of large h.
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Figure 4.3: A sample plot of Function 4.9 with increasingly large h, beginning with a gentle slope

for clean, far-reaching derivatives, progressing towards a strict binary step function.

In this work, h is manually increased and resolved iteratively, with each solution initializing

the next. This also helps avoid the numerical difficulties presented by the steep gradients of large

h values by being very close to the solution as the numerical challenges increase. This method is

related to, but has the opposite effect of, the barrier method used in interior point solvers [217]. It

is the authors’ opinion that this form would be better implemented within a solver where h could

be updated on a per-iteration basis. This is a point of future work.

This function is suitable for this use because product specification variables are typically

within a known, relatively small bound. Thus, the function f can provide a gradient through the

entire range with initially small h.

Similar to Equation 4.9, Equation 4.10 provides a continuous relaxation by combining two

sigmoid functions, scaled to a maximum value of one.

B(x) =

1
1+exp(k(spec−tol−x)) +

1
1+exp(k(−spec−tol+x)) −1

1
1+exp(k(−tol)) +

1
1+exp(k(−tol)) −1

(4.10)
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In Equation 4.10, low values of k provides clean, far-reaching gradients while large k ap-

proximates the step function. k in this method is the counterpart to h in Equation 4.9. Figure 4.4

shows this function with increasing values of k.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

process variable x

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

sc
h
e
d
u
lin

g
 b

in
a
ry

 B

Figure 4.4: A sample plot of the sigmoid function with increasingly large k, beginning with a

gentle slope for clean, far-reaching derivatives, progressing towards a strict binary step function.

Sample results

Each of the proposed linking functions is capable of finding a solution. However, since the

provided gradients differ, the solver takes a different path to each solution. This can yield slightly

different solutions as each problem may fall in different local optima. For the problem provided in

Equation 4.4 (further described in Section 4.4), Figure 4.5 shows a set of sample results of both the

end profit and the time required to achieve the solution. These results all use continuous variables

for B, but each solution is sufficiently close to binary. An attempt at solving these problems with

actual binary variables, in an MINLP using the APOPT solver [177], did not solve in under 10,000

seconds.

For this problem, the pseudo-binary method (Equation 4.9) consistently returns the highest

profit and is therefore recommended for finding the initial schedule solution. However, Equation

4.7 is the fastest method and is therefore recommended for closed-loop control once a highly
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detailed solution is obtained and used to initialize the next control move. For other problems with

different dynamics or constraints, a different linking function may work better.
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Figure 4.5: A comparison of different linking functions at various horizon lengths. The figures

show that Eq. 4.9 (PB or “pseudo-binary”) consistently returns the best schedule, while Eq. 4.7

(hard) consistently yields the fastest solution.

4.3 Strategies for Computational Tractability

To further reduce the time required to solve the MINLP problem, a computationally light

continuous-time scheduling optimization is used to initialize the discrete-time problem. Both feed-

back linearization and nonlinear model-predictive control (NMPC) are used to estimate the transi-

tion times in the continuous-time scheduling problem used for initialization.

A pseudo-binary variable strategy is presented to make the discrete-time mixed-integer

dynamic optimization (MIDO) problem solvable by NLP. An initialization strategy is presented to

further shorten the computational time for the discrete-time problem by using a simpler continuous-

time, slot-based scheduling problem. The transition times needed to solve this continuous-time,

slot-based scheduling problem are estimated using two alternative techniques: feedback lineariza-

tion and nonlinear model predictive control. A transposition of the continuous-time scheduling

solution to discrete-time is presented to initialize the discrete-time problem.
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4.3.1 Continuous-time Scheduling Initialization

This work further lightens the computational burden of the discrete-time SC problem through

initialization. As shown in Safdarnejad et al. [218], initialization of discrete-time problem variables

at each finite element to values close to the optimal solution reduces the computational time re-

quired. In this work, initialization of binary variables (Bi,t) and key process variables at each finite

element is employed to reduce the computational burden of each iteration of combined scheduling

and control.

Figure 4.6: Continuous-time scheduling divides the future horizon into time slots that consist of a

transition period τi′i (where product i′ is made in slot s - 1 and product i is made in slot s) followed

by the production period for product i.

If implemented closed-loop, initialization can be provided by the solution of a previous

iteration. However, continuous-time scheduling optimization is selected as a computationally light

way to initialize in the case that a previous solution is unavailable. Continuous-time scheduling di-

vides a future time horizon into time slots composed of a transition period followed by a production

period, as shown in Figure 4.6. A continuous-time scheduling optimization is used to initialize the

discrete-time problem in this work. This continuous-time optimization seeks to maximize profit

90



www.manaraa.com

while observing scheduling constraints. The objective function is formulated as follows:

max
zi,s,t

s
i ,t

f
i ∀i,s

J =
n

∑
i=1

Πiωi−qcrmTm

s.t. Eq.4.12−4.18

(4.11)

where Tm is the makespan, n is the number of slots, zi,s is the binary variable that governs the

assignment of product i to a particular slot s, ts
s is the start time of the slot s where product i is

made, t
f
s is the end time of the same slot, Πi is price per unit of product i, q is production rate, crm

is raw material cost, and ωi represents the amount of product i manufactured,

ωi =
n

∑
s=1

∫ t
f
s

ts
s+τi′i

zi,sqdt (4.12)

where τi′i is the transition time between product i′ made in slot s - 1 and product i made in slot s.

The time points must satisfy the precedence relations

t f
s > ts

s + τi′i ∀s > 1 (4.13)

ts
s = t

f
s−1 ∀s 6= 1 (4.14)

t f
n ≤ Tm (4.15)

which require that a time slot be longer than the corresponding transition time, impose the coinci-

dence of the end time of one time slot with the start time of the subsequent time slot and define the

relationship between the end time of the last time slot and the total makespan or horizon duration

(Tm).

Products are assigned to each slot using a set of binary variables, zi,s ∈
{

0,1
}

along with

constraints of the form
n

∑
s=1

zi,s = 1 ∀i (4.16)

n

∑
i=1

zi,s = 1 ∀s (4.17)

which ensure that only one product is made in each time slot.
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The makespan is fixed to the length of the scheduling and control horizon rather than set as

a manipulated variable adjustable by the NLP solver. Demand constraints are formulated such that

production may not exceed the maximum demand for a given product, as follows:

ωi ≤ δi ∀i (4.18)

The continuous-time scheduling optimization requires transition times between steady-

state products (τi′i) as well as transition times from the current state to each steady-state product if

current state is not at steady-state product conditions (τ0′i). The transition times are estimated us-

ing two different methods: nonlinear model predictive control (NMPC) and feedback linearization.

Transition times between steady-state products can be computed off-line and stored in memory;

however, transition times from current state to steady-state products must be calculated on-line at

each iteration of integrated scheduling and control optimization if implemented on-line. These two

approaches to calculate transition times are discussed in the following subsections.

Nonlinear Model Predictive Control Transitions

NMPC transitions minimize an objective function of the form

min
u,t f

J = (x(t f )− xsp)
TWsp(x(t f )− xsp)+ t fWtime

s.t. nonlinearprocessmodel

x(t0) = x0

(4.19)

where x(t f ) is the process state at final time, Wsp is the weight on the set point for meeting target

product steady-state, t f is the final time or time required for the transition, Wtime is the weight on

minimizing the final time, xsp is the target product steady-state, and x0 is the start process state from

which the transition time is being estimated. This formulation harnesses knowledge of process

dynamics in the system model to find an optimal trajectory and minimum time required to transition

from an initial concentration to a desired concentration. The final time chosen by NMPC is taken

as the estimate of transition times to use in the continuous-time scheduling optimization. This

transition time is expected to be similar to the time taken by the discrete-time combined scheduling
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and control algorithm to transition between product steady-state conditions as both approaches

harness a nonlinear system model to find optimal control profiles between products.

Feedback-Linearized Transitions

Although NMPC harnesses full knowledge of process dynamics as available in the system

model and is expected to effectively imitate the transition durations of the combined scheduling

and control algorithm presented in this work, NMPC is expected to scale poorly (in terms of com-

putational burden) to larger systems with complex models and large numbers of products. The

large computational requirement of NMPC may be unsuitable for initialization purposes in on-line

implementations of integrated scheduling and control. Consequently, feedback linearization is pre-

sented as an alternative approach for estimating transition times in the continuous-time scheduling

optimization.

A linear system y = f (x,u) has the property that f (x,u0 + u1) = f (x,u0)+ f (x,u1). Thus

the response of the system to the initial input u0 can be decoupled from that of the step size u1.

Additionally, a closed-form solution for the transition time given a step size can be estimated, thus

avoiding preprocessing time and space.

Feedback linearization can be applied to dynamic systems of the form

ẋ = f (x)+g(x)u

y =h(x)
(4.20)

Following the procedure outlined by Khalil et al. [219], the control signal u can be designed

to make the input-output behavior of the system linear. For instance, in the SISO (Single Input

Single Output) case

u =
1

LgL
ρ−1
f h(x)

(

−L
ρ
f h(x)+ v

)

(4.21)

where L f represents the Lie derivative along f and ρ is the relative degree of the system. In this

case, the input-output behavior of the closed-loop system is
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v = y(ρ) (4.22)

which is a chain of ρ integrators.

An issue with feedback linearization is that the resulting closed-loop dynamics may not be

stable, as seen in the SISO case above. This work proposes to use LQR control for the stabilizing

controller, since full state feedback of x̂ is available. This well-known approach finds a gain K that

minimizes

J =
∫ ∞

0
xT Qx+ vT Rv dt (4.23)

the control law then becomes v =−Kx̂ [220].

One drawback to using feedback linearization is that it can produce arbitrarily large input

signals u in order to maintain linearity. In most cases, this leads to unreasonable state values x that

are allowed by the mathematics of the model but are not realistic. For this reason, Q and R should

be tuned in order to keep u within reasonable bounds for the relevant step sizes in the system.

Once the system has been tuned appropriately, then the transition times can be calculated

independent of the starting point. This approach is similar to the scale-bridging model (SBM)

as presented by Baldea et al. (2016) [22]. However, whereas Baldea et al. use linearization as

a method for feeding information on process dynamics to a scheduler, this work uses feedback

linearization strictly to estimate transition times for a continuous-time scheduling initialization for

an overall nonlinear problem.

Figure 4.7: Stabilized linearized system block diagram.
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The relevant difference between initial and target states is fed in as the reference signal sstep

to calculate the transition durations. A function of the form

ttrans = α · log(sstep)+β (4.24)

is fit to simulated transition times from a range of sstep to give a closed form and computation-

ally light solution for finding the transition time in the estimated CSTR system. This feedback

linearization method is expected to scale to larger systems with negligible computational require-

ments.

Continuous-Time to Discrete-Time Transpose

The solution to the continuous-time optimization provides a schedule that includes slot

start times ts
s and slot end times t

f
s as well as product assignment to each slot as determined by zi,s.

This continuous-time schedule determines the initialization of both the binary variable Bi,t and the

state variables x at each finite element. The initialization reduces the computational time required

for the NLP solver at each iteration of combined scheduling and control. The initialization occurs

according to the following algorithm:

for each finite element ( f e),

iff zi,s = 1 and ts
s < t f e < t f

s : (4.25a)

then Bi, f e = 1 and x f e = xi; (4.25b)

else Bi, f e = 0 (4.25c)

For each time slot in the continuous-time schedule [ts
s ,t

f
s ], Bi, f e transposes the product

assignment (zi,s) to finite elements within that time segment. x is initialized to the appropriate

steady-state operating value (xi) corresponding with the product manufactured during a given slot

as given by zi,s.
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4.4 Case Study

This section presents the CSTR problem used to highlight the value of the formulation

introduced in this work. While this system does not directly represent a specific industrial problem,

the generic CSTR model is applicable in various industries from food/beverage to oil and gas and

chemicals. This work details a general approach to combined scheduling and control and this

model demonstrates the benefits on a generic system. Notable assumptions of a CSTR include:

constant volume, well mixed and constant density.

The model shown in Eqs. 4.26 to 4.29 is an example of an exothermic, first-order reaction

of A⇒ B where the reaction rate is defined by an Arrhenius expression and the reactor temperature

is controlled by a cooling jacket. The fluid in the cooling jacket undergoes an external, arbitrary

cooling process where ∆Hcool is the effective cooling rate.

dCA

dt
=

q

V
(CA0−CA)− k0e−EA/RTCA (4.26)

dT

dt
=

q

V
(Tf −T )−

1

ρCp
k0e

−EA
RT CA∆Hr−

UA

V ρCp
(T −Tc) (4.27)

dTc

dt
=

qcool

Vj
(Tcin−Tc)+

UA

VjρCp(T −Tc)
(4.28)

∆Hcool = ρCp.coolqcool(Tc−Tcin) (4.29)

In these equations, CA is the concentration of reactant A, CA0 is the feed concentration, q is the inlet

and outlet volumetric flowrate, V is the tank volume (q/V signifies the residence time), EA is the

reaction activation energy, R is the universal gas constant, UA is an overall heat transfer coefficient

times the tank surface area, ρ is the fluid density, Cp is the fluid heat capacity, k0 is the rate constant,

Tf is the temperature of the feed stream, CA0 is the inlet concentration of reactant A, ∆Hr is the

heat of reaction, qcool is the flowrate of coolant, Vj is the volume of the cooling jacket, T is the

temperature of reactor, Tc is the temperature of cooling jacket, Tcin is the temperature of cooling

return line and Cp.cool is the cooling fluid heat capacity. Table 4.1 lists the CSTR parameters

used.

In this example, one reactor can make multiple products by varying the concentrations

of A and B in the outlet stream. The manipulated variables in this optimization are ∆Hcool and
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Table 4.1: Reactor Parameter Values

Parameter Value

V 400m3

qcool/Vjacket 5hr−1

EA/R 8750K
UA

V ρCp
0.523hr−1

k0 1.8e10hr−1

Tf 350K

CA0 1mol/L
∆Hr

ρCp
−209Km3

mol

q. q is bounded by 100m3/hr ≤ q ≤ 120m3/hr and ∆Hcool is either bounded by 4MW or a

diurnal maximum cooling curve. The sample problem uses three products over a 48-hour hori-

zon. The product descriptions are shown in Table 4.2, where the product specification tolerance is

±0.005mol/L.

Table 4.2: Product Specifications

Product CA Max Demand Price

(mol/L) (m3) ($/10 m3)

1 0.35 1920 24

2 0.12 2880 27

3 0.25 2880 21

The only scheduling constraint used in this case study is demand, as shown in Equation

4.30. While these results use maximum demand (useful for situations like filling storage tanks

rather than filling orders), it can easily switch to minimum demand by flipping the inequality.

∫ t

0
Bi,t ≤ maxdemandi, ∀i (4.30)

The pseudo-binary variable approach is implemented via the following equations, with CA

being the process state variable relating to each product i:

fi(CA) = h10log(1/h)/tol2(CA,i−CA)
2
∀i (4.31)
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Bi(CA)≤ fi(CA), Bi ∈ [0,1] ∀i (4.32)

For continuous-time scheduling initialization, NMPC estimations of transition times are

calculated using the following objective:

min
∆H,q,t f

J = (CA(t f )−CA,sp)
TWsp(CA(t f )−CA,sp)+ t fWtime

s.t. Eq.4.26−4.29

(4.33)

while feedback linearization estimates transition times with the following closed-form equation fit

to feedback linearized process simulations:

ttrans = 0.9853 · log(sstep)+5.332 (4.34)

For a detailed derivation of Equation 4.34, the reader is directed to Appendix A.

Four test cases were considered to develop the integration of time-based parameters:

1. Static pricing and cooling constraints

2. Static pricing, diurnal cooling constraint function

3. Static cooling constraint, diurnal pricing function

4. Diurnal pricing and cooling constraint functions

Case 1 is the standard case with time-independent constraints that should largely replicate the

results of a continuous-time, slot-based scheduling formulation. Results from cases 2 and 3 are

summarized since their combined effects reappear in case 4.

The dynamic diurnal cycles of energy price and effective cooling constraints are general-

ized by simple sinusoidal curves, as shown in Figure 4.8. The energy price varies from $10 per

MWh during the day to $90 per MWh during the night, with the static price representing the av-

erage of $50 per MWh. The effective cooling constraint represents the amount of cooling done

that affects the system; in other words, the cooling done minus losses to the environment, etc.

Therefore, the higher ambient temperature during the day reduces effective cooling to the reactor

because of heat loss to the environment, while more cooling is possible during the colder night.

This consideration allows the system to account for demand response in the optimization, lever-
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aging the abilities to account for dynamic constraints and parameters in the discrete-time dynamic

optimization problem.

0 10 20 30 40
4.0

4.5

5.0

5.5

6.0

∆
H
c
 m

a
x
 (
M
W
)

0 10 20 30 40

Time (hr)

0

20

40

60

80

100

E
n
e
rg
y
 P
ri
ce
 (
$
/M

H
h
)

Figure 4.8: Plots of maximum effective cooling constraint and time-of-day pricing over 48 hours.

The objective function is formulated as follows:

maximize
n

∑
t

n

∑
i

(qtΠiBi,t)−Et

s.t. Process Model (Eqs. 4.26 - 4.29)

Scheduling constraints (Eq 4.30)

Pseudo-binary Eqs. (Eqs. 4.31 - 4.32)

(4.35)

4.4.1 Closed-loop Control

Since this method uses the full process model of MPC with sufficiently fine time discretiza-

tion, it can be used in closed-loop control. Once an adequate solution is reached using an initial-

ization method above, the previous solution horizon provides the initialization for the next control

move calculation. On rare occasions of sufficiently large disturbances, the previous solution may

not be adequate for initialization and one of the above initialization strategies may be used once

again.
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This work solves a simple closed-loop sample case over 24 of the 48 hour horizon. Further

analysis of this method’s closed-loop strengths and challenges, including responses to more drastic

disturbances of both control (e.g. sudden change in concentration) or scheduling (e.g. change in

demand) parameters is a subject of future work.

The closed-loop implementation uses the same problem formulation as Equation 4.4. The

selected linking function is Equation 4.7, which is generally the fastest method. The individual

product demands are updated on each iteration based on real-time production numbers.

4.5 Results

The results of each of the four test cases are described below. The description for each case

includes comparisons of the effects of strategies employed to reduce the computational require-

ments of the problem. Each case has 2 plots for each initialization scheme employed. The first plot

shows the system state variables, and the second plot shows the maximum cooling constraint with

the actual system cooling. In cases 2 and 4, the energy price curve is overlaid onto the plots, with

the right axis showing price units. The description of each case also contains tables detailing the

computational requirements and economic results for convergent cases.

Although the relaxed psuedo-binary variables are capable of yielding non-integer values,

they almost always come very close to integer values. There are occasional non-integer values,

especially during transitions, but their overall effect is minor compared to the magnitude of the

problem, the uncertainty of a 48 hour schedule and plant-model mismatch. To remove the effects

of intermediate values, the results are post-processed and the reported profits include only on-spec

production.

Each problem is solved on an Intel i7 CPU-6700 at 3.40 GHz. The continuous-time

scheduling problems are solved using the COUENNE branch-and-bound MINLP solver [178],

the NMPC transition time estimations are solved with the APOPT MINLP solver [177], and the

discrete-time integrated problems are solved with the IPOPT NLP solver [217]. The discrete-time

problems are discretized over 200 finite elements with one collocation point within each finite

element. Each problem is formulated using the Pyomo modeling language [58,175]. Pyomo is de-

signed for ultimate flexibility rather than solution speed [59]. The flexibility is useful for exploring
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these initialization strategies, but Pyomo is not recommended for time-sensitive solutions. Thus,

the case study is replicated in GEKKO to compare solution speeds.

4.5.1 Case 1: Static Pricing and Cooling Constraints
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(a) No initialization employed, reached max iterations.
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(b) Initialized by continuous-time scheduling with linear-estimated transition times.
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(c) Initialized by continuous-time scheduling with NMPC-estimated transition times.

Figure 4.9: Case 1 results.

As shown in Figure 4.9, case 1, the standard case with time-independent constraints of

static price and static cooling, maximizes the production of product 2 for all initialization schemes

employed because of its high price. Production of product 3 is minimized due to its low price.
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Table 4.3: Computational Requirements: Case 1

Initialization Initialization Discrete Problem Total

Scheme CPU time (s) CPU time (s) CPU time (s)

None 0 > 10,000 > 10,000

Continuous-time (linear) 0.18 619 619

Continuous-time (NMPC) 0.60 921 922

Table 4.4: Economic Summary: Case 1

Initialization Product Production (m3) Profit

Scheme 1 2 3 ($)

Continuous-time (linear) 1752 2866 559 3538

Continuous-time (NMPC) 1780 2839 559 3541

Product 1 sells at an intermediate price and is therefore produced during the remainder of the fixed

horizon duration. The production order is selected to minimize transition times by stepping down

to products with incrementally lower concentrations.

The benefits of initialization are demonstrated by the orders of magnitude in computational

time reduced by applying continuous-time initialization to the problem. Effective continuous-time

scheduling initialization guides the discrete-time problem to find the optimal solution, whereas

the non-initialized problem fails to converge within reasonable time. The non-optimal result of

the non-initialized problem after maximum iterations is shown in Figure 4.9(a) for comparison.

The problem reaches a local minimum, producing a large amount of each product but creating a

sub-optimal schedule with more transitions than necessary.

As expected, the feedback linearization estimations of transition times provide a reduc-

tion in initialization CPU time by roughly 60%, compared to the NMPC method. However, the

CPU time required for initialization is negligible with respect to the overall problem. The eco-

nomic results of the variations in continuous-time scheduling initializations vary only negligibly;

however, continuous-time scheduling initialization with feedback linearization requires the least

computational time.
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Figure 4.10: Case 2: Initialized by continuous-time scheduling with NMPC-estimated transition

times.

Table 4.5: Economic Summary: Case 2

Initialization Product Production (m3) Profit

Scheme 1 2 3 ($)

Continuous-time (NMPC) 1777 2851 909 4010

4.5.2 Case 2: Static Pricing, Diurnal Cooling Constraint Function

The diurnal cooling constraint curve applied in case 2 allows product 2 to be produced at

a higher rate compared to case 1. The production rate is decreased during the hottest part of the

day, but reaches the lower production rate of case 1 for only a brief period. Further, the transitions

between products occur more quickly when the max cooling constraint is higher because of the

extra cooling (especially the transition between products 3, CA=0.25, and 2, CA=0.12).

The overall profit for Case 2 increases ˜13% over case 1 for convergent continuous-time ini-

tialization. This shows the value of considering time-dependent constraints in combined schedul-

ing and control and further justifies a discrete-time formulation because of the ease with which

it can apply these constraints. Continuous-time formulations require steady-state conditions dur-

ing production slots, which eliminates the possibility of considering time-dependent parameters as

demonstrated in this work.

CPU time requirements for convergent continuous-time initialized problems decrease by

over 50% compared to case 1. This demonstrates the extra effort required by the optimization

algorithms to find an optimal solution while meeting the restrictive, fixed cooling constraint in

case 1.

103



www.manaraa.com

4.5.3 Case 3: Static Cooling Constraint, Diurnal Pricing Function
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Figure 4.11: Case 3: Initialized by continuous-time scheduling with NMPC-estimated transition

times.

Table 4.6: Economic Summary: Case 3

Initialization Product Production (m3) Profit

Scheme 1 2 3 ($)

Continuous-time (linear) 1754 2836 489 3400

Continuous-time (NMPC) 1919 2810 370 3482

Case 3 largely follows case 1, except that production rates decrease when energy prices

peak. Energy costs too much during these times, so the optimization minimizes production rate

(q) to the lower bound of 100 m3/hr. Also, transitions between products occur at slightly differ-

ent times to compensate for different production rates and to transition during times of cheaper

energy.

The profit in this case for the continuous-time initialized problems decreased slightly (˜3%)

from case 1 due to high energy prices, since this case considers realistic dynamic pricing. Again,

time-dependent parameters are shown to be worth considering.

Effective continuous-time scheduling initialization once again guides the discrete-time prob-

lem to find the optimal solution, whereas the non-initialized problem ends at a local minimum,

producing a large amount of each product but creating a sub-optimal schedule with more transi-

tions than necessary. CPU time requirements for initialized problems increase by approximately
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40% compared to Case 1, demonstrating the extra effort exerted by the optimization algorithm to

find the optimal solution with dynamic pricing parameters.

4.5.4 Case 4: Diurnal Pricing and Cooling Constraint Functions
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(a) No initialization employed.
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(b) Initialized by continuous-time scheduling with NMPC-estimated transition times.

Figure 4.12: Case 4 results.

Table 4.7: Computational Requirements: Case 4

Initialization Initialization Discrete Problem Total

Scheme CPU time (s) CPU time (s) CPU time (s)

None 0 > 10,000 > 10,000

Continuous-time (linear) 0.18 > 10,000 > 10,000

Continuous-time (NMPC) 0.60 571 572

Case 4 implements the positive effects of case 2 as well as the peak energy prices of case

3 — the transitions occur at different places, production rate of product 2 is maximized and pro-

duction at peak energy prices is decreased (Figure 4.12). Transitions occur more quickly during
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Table 4.8: Economic Summary: Case 4

Initialization Product Production (m3) Profit

Scheme 1 2 3 ($)

Continuous-time (NMPC) 1778 2820 816 3863

periods of higher maximum cooling. The overall profit increases by approximately 10% over the

base case (Case 1) for the convergent initialized problem, but is still lower than Case 2 due to the

effects of peak energy prices (Table 4.8).

The CPU requirement of the convergent initialized problem are similar to that of Case 2,

but lower than those of Cases 1 and 3 (Table 4.7). This demonstrates the additional effort required

by the optimization algorithm to find an optimal solution with a restrictive, fixed constraint versus

a dynamic constraint. The benefits of continuous-time scheduling initialization are again reiter-

ated by the orders of magnitude reduced in computational time required and by the guidance to

the optimal solution rather than a local minimum. As in Case 2, the continuous-time schedul-

ing initialization with NMPC estimations converges whereas the linearized initialization fails to

converge.

4.5.5 GEKKO Solutions

As previously mentioned, Pyomo is designed for flexibility rather than speed. This section

reimplements the SC problem in the GEKKO modeling language [75], which specializes in robust,

quick solutions to dynamic optimization problems. Pyomo and GEKKO have some structural

differences, especially in the way each handles orthogonal collocation. To replicate the same

degrees of freedom used in Pyomo, GEKKO solutions use 400 finite elements with no internal

nodes.

All 12 GEKKO solutions converged in under 10,000 seconds and all profit results are within

4% difference of the converged Pyomo results reported. The time results from GEKKO are shown

in Table 4.9 and the profit results are shown in Table 4.10.

For the six cases in which Pyomo did not reach a solution in under 10,000 seconds, GEKKO

reached a solution in an average time of 214 seconds. In the 6 cases that both Pyomo and GEKKO
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Table 4.9: Computational Requirements: GEKKO

Initialization Case 1 Case 2 Case 3 Case 4

Scheme CPU time (s) CPU time (s) CPU time (s) CPU time (s)

None 193 187 278 362

Continuous-time (linear) 137 111 191 152

Continuous-time (NMPC) 129 103 187 155

reached a solution, Pyomo took an average of 793 seconds while GEKKO took an average of 150

seconds – about 5 times faster.

Using GEKKO, the uninitialized problems reached local minima that were worse than the

solutions from initialized cases, confirming the value of the initialization techniques. Unlike in Py-

omo, linear and nonlinear initializations achieved the same solution but the nonlinear initialization

proved slightly faster on average.

Table 4.10: Profit Results: GEKKO

Initialization Case 1 Case 2 Case 3 Case 4

Scheme Profit Profit Profit Profit

None 3598 3835 2942 3575

Continuous-time 3618 3975 3488 3995

4.5.6 Closed-loop Simulation

The previous cases demonstrate this method’s ability to provide a detailed schedule, includ-

ing considering time-dependent parameters such as energy cost and effective cooling constraints.

However, this method is also capable of closed-loop control without modification because it uti-

lizes a full dynamic process model and can begin with any initial conditions. In this capacity, this

formulation can overcome process disturbances of short-time scales with economic consideration

of multiple products.

The previous results used Equation 4.9 for flexibility and the best solution. This section

uses Equation 4.7 and GEKKO for speed in online control. Under these new conditions, and with

the highly detailed solution of the previous time-step as initialization, each closed-loop solution at
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every 5 minute interval solved fast enough for real-time. A summary of solution times is provided

in Table 4.11.

Table 4.11: Closed-Loop Time Summary

Horizon (hr) Control Move Total Solver Time (hr) Solutions Mean Solution Time (s)

24 5 min 8.39 288 105

4.5.7 Summarized Results

Table 4.12: Initialization Comparison

Initialization Profit ($) Profit ($) CPU time (s) CPU time (s)

Scheme Pyomo GEKKO Pyomo GEKKO

None NA 3487 > 10,000 255

Continuous-time (linear) 3469 3769 586 (2 converged) 148

Continuous-time (NMPC) 3724 3769 897 (4 converged) 144

Table 4.13: Case Comparison

Case Profit ($) Energy Pricing Cooling Constraint

1 3541 Static Static

2 4010 Static Dynamic

3 3482 Dynamic Static

4 3863 Dynamic Dynamic

Table 4.12 shows profit and CPU requirements of each initialization scheme, averaged

across all convergent cases, to make an overall comparison between initialization schemes. Table

4.13 displays the profit for continuous-time scheduling initialization with NMPC estimated tran-

sition times (the only initialization scheme convergent for all cases) to demonstrate the effects of

diurnal constraints and parameters on combined scheduling and control optimization.

In summary, time-dependent constraints affect the profit, optimal schedule, and optimal

control or operation of a chemical process. These considerations can have a significant economic
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impact, with diurnal constraints increasing profits ˜13% from the base case in this example. It is

anticipated that, under the right circumstances, the scheduler may go so far as to switch products

in response to these diurnal cycles, forcing extra transitions that would not be possible in current

implementations of slot-based combined scheduling and control formulations, where the number

of slots frequently equals the number of products. In other cases, the scheduler may order products

differently with time-based constraints in consideration. Further, this method is easily applied

to other time-dependent parameters beyond diurnal cycles, such as feed stock price predictions.

These explorations are the subject of future work.

The discrete-time formulation is shown to be a feasible and effective method to account for

time-dependent parameters and constraints in combined scheduling and control. The positive ef-

fects of continuous-time scheduling initialization have been demonstrated. Convergent continuous-

time scheduling initialization decreases computational requirements on average by approximately

15 times. The method for estimating transition times in the continuous-time scheduling initializa-

tion is found to be significant in determining the convergence of the discrete-time SC problem.

NMPC estimations are found to be more consistent for initializing the nonlinear discrete-time for-

mulation and are found to guide the solution to more optimal solutions. Even with the effective

NMPC initialization, the full MINLP did not solve successfully in under 10,000 seconds using the

APOPT or Bonmin solvers.

4.6 Conclusion

This work applied a nonlinear discrete-time formulation for combined scheduling and con-

trol. This method provided a schedule of sequential products using the full model dynamics

through the entire horizon. The discrete-time formulation easily allowed the implementation of

time-dependent parameters and constraints. This work applied time-dependent parameters of diur-

nal cycles of energy price and maximum effective cooling of a CSTR. This optimization improved

open-loop scheduling profit prediction by 13% over the base scenario. This work implemented

a pseudo-binary approach to assist gradient-descent solvers in finding the optimal solution to an

inherently mixed-integer problem. This work also leveraged continuous-time scheduling with dif-

ferent methods to estimate transition times to calculate an optimal schedule order and schedule

timing to initialize the discrete-time problem. Continuous-time scheduling with nonlinear estima-
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tions of transition times consistently decreased the computational requirements of the nonlinear

discrete-time problem by many orders of magnitude.
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CHAPTER 5. CONCLUSION

This dissertation explored novel approaches in the field on large-scale non-linear dynamic

optimization, especially applied to scheduling and control. Optimal scheduling and control ap-

plications have historically been separate problems with little coordination. The current scheme

presents inefficiencies in manufacturing of continuous chemical processes. After understanding

the approaches, benefits, challenges and pitfalls of current scheduling and control practices, this

dissertation investigated the combination of these applications to a single problem to achieve more

optimal production than the two applications could achieve separately.

5.1 Economic Benefits of Combining Scheduling and Control

Chapter 2 demonstrated the economic justification for combining scheduling and control.

It explored four levels of successively tighter integration: open-loop segregated scheduling and

control, closed-loop segregated scheduling and control, open-loop scheduling with consideration

of process dynamics, and closed-loop integrated scheduling and control responsive to process dis-

turbances and market fluctuations. Each level was applied in three scenarios of unexpected dis-

turbances. It was demonstrated on a CSTR benchmark application in closed-loop simulation over

24 hours that tighter integrations of the two approaches allowed for increased capacity to over-

come disturbances in both process manufacturing and the product markets. This work validates

the field of combining scheduling and control. Further, a simple, novel approach for combining

scheduling and control was implemented as the highest level of integration. A fixed horizon in-

tegrated scheduling and control formulation for multi-product, continuous chemical processes is

utilized, in which nonlinear model predictive control (NMPC) and continuous-time scheduling

are combined. This approach decomposed the MINLP problem to coordinated NLP and MILP

optimizations.
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5.2 Novel Scheduling and Control Paradigm

Chapters 3 and 4 presented approaches to fully unify scheduling and control for continuous,

multi-product manufacturing.

In Chapter 3, linear model predictive control is extended to both provide closed-loop con-

trol and optimize a product grade schedule. The proposed methods are time scaling of the linear

dynamics based on throughput rates and grade-based objectives for product scheduling based on a

mathematical program with complementarity constraints. The linear model is adjusted with a res-

idence time approximation to time-scale the dynamics based on throughput. Although nonlinear

models directly account for changing dynamics, the model form is restricted to linear differential

equations to enable fast online cycle times for large-scale and real-time systems. This method

of extending a linear time-invariant model for scheduling is designed for many advanced control

applications that currently use linear models. Simultaneous product switching and grade target

management is demonstrated on a reactor benchmark application. The objective is a continuous

form of discrete ranges for product targets and economic terms that maximize overall profitabil-

ity.

Chapter 4 investigates combining scheduling and control using a nonlinear discrete-time

formulation, utilizing the full nonlinear process model throughout the entire horizon. This discrete-

time form lends itself to optimization with time-dependent constraints and costs. The discrete-

time approach to combined scheduling and control is explained, along with sample pseudo-binary

variable functions to ease the computational burden of this approach. An initialization strategy

using feedback linearization, nonlinear model predictive control, and continuous-time scheduling

optimization is presented. The formulation is applied with a generic CSTR system in open-loop

simulations over a 48-hour horizon and a sample closed-loop implementation. The value of time-

based parameters is demonstrated by applying cooling constraints and dynamic energy costs of a

sample diurnal cycle, enabling demand response via combined scheduling and control.

5.2.1 Novel Contributions

In context of other work in the field, the work presented in this dissertation stands out in

the following ways:
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• The economic benefit of combining scheduling and control is demonstrated quantitatively

compared to current practice

• Time is represented with the “discrete-time” paradigm

• Solutions present both a long-term schedule featuring multiple products and process dynam-

ics, and short-term control moves for closed-loop implementation

• The paradigm can be easily simplified for a reliable replacement of linear MPC, or expanded

to include any constraints or objectives

• The discrete-time approach enables consideration of time-based parameters and constraints,

which are shown to have significant impact in economic optimality

5.3 Future Work

While this and other dissertations have addressed the value of combining scheduling and

control, and have presented various approaches, much work is still required before such paradigms

become common in industrial applications.

Chapter 2 demonstrated the benefit of ISC on a CSTR case study with three scenarios. The

development of additional benchmark problems applicable to a wider variety of industrial scenar-

ios is proposed as an important potential subject of future work. With increasing research in ISC,

benchmark problems for formulation performance comparison of integrated scheduling and con-

trol formulations, as well as for comparison against a baseline segregated scheduling and control

formulation, are increasingly important. Benchmark applications and scenarios applicable to batch

processes, multi-product continuous processes, and other processes with scenarios representative

of probable industrial occurrences should be developed.

The work presented in this dissertation is applicable to continuous processes considering

a single process unit. Progressive integrations proving economic benefit of scheduling and con-

trol integration should also be applied to batch processes and continuous processes considering

multiple process units.

This work motivates continued investigation into discrete-time formulations and time-dependent

parameters in considering both transitions and product manufacturing. In particular, the pseudo-

binary approach presented in Chapter 4 should be implemented as part of an interior point solver.

Additionally, accounting for product inventory, the specifics of closed-loop implementation, and
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accounting for process and market uncertainties should be addressed in future work as this method

matures.

5.3.1 Solver Development

Advances to algorithms, such as the large-scale non-linear programming solvers presented

in the Introduction and used throughout this work, enabled the possibility of combining schedul-

ing and control. However, further improvements in these solvers would greatly facilitate more

reliable solutions to more complex applications. This section presents some ideas for solver devel-

opment.

Combining Interior Point and Active Set Approaches

The benefits of combining interior-point (IP) and active set (AS) have been theorized [221].

Figure 5.1 shows benchmark performance of various solvers, including the theoretical performance

of a combined active set (APOPT) and interior point (BPOPT) solver, where the faster solution of

each method is accepted. Some solvers tap these benefits by switching between methods at pre-

determined conditions [107]. Further combining interior-point and active-set methods will unify

the benefits of each method: robust early steps of poorly initialized problems with an accelerated

convergence near the solution. Figure 5.1 shows the combination of AS and IP having potential to

solve approximately 30% of problems unable to be solved through either method alone.

Interior-point and active-set methods are the two leading approaches to NLP with inequality

constraints [222]. Each method has its strengths and weaknesses. Interior point methods tend to do

better with larger, poorly initialized problems while active set methods are faster when excellent

initialization is available [95, 223].

Active set methods have the benefit of smaller matrix factorizations when inactive con-

straints are ignored. Further, they encourage the solver to meet the active inequality bounds di-

rectly, when optimal. The biggest weakness of active set methods is the accurate selection of the

active set. Each iteration of an AS solver can include multiple minor iterations as it seeks the active

set. Interior point methods provide a barrier term on inequality constraints that maintain feasibility.
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Figure 5.1: Solver comparison on benchmark set showing benefit of combining IP (BPOPT) and

AS (APOPT) methods [1].

However, these barriers can slow the approach to active inequality bounds. Further, all constraints

are considered on each iteration, leading to larger matrices in the Newton step.

Future work should seek to combine the benefits of AS (smaller matrices, faster approach

to inequality bounds) with the benefits of IP (better initialization, no time wasted in switching the

active set).

One approach to combining the methods includes dividing the inequality constraints into

“active”, “inactive” and “semi-active”. Active and inactive constraints will be treated in the stan-

dard AS approach, while “semi-active” constraints will include a barrier term, like inequality con-

straints in the IP method. These semi-active constraints would traditionally be inactive in the AS

method and would therefore be ignored. By ignoring them, the Newton step is liable to skip over

them – resulting in a change in the active set and an additional minor iteration. By providing the

barrier term, the solver is aware of the constraint, and encouraged not to violate it, but is not forced

to treat it as an equality constraints (like typical “active” constraints).

115



www.manaraa.com

This combined method requires a new objective function:

minimize
x

Φ(x) := f (x)−µ ∑
i

Diln(xi)

subject to c(x) = 0

x≥ 0

(5.1)

where D is the set of semi-active constraints (Di = 1 if constraint i is semi-active, Di = 0 other-

wise).

The Newton step of the combined method incorporates barriers on semi-active constraints,

ignores inactive constraints and calculates only the semi-active bound multipliers implicitly, as

follows:
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dzDk = µ jX
−1
k e− zDk

−ΣDk
dzDk (5.3)

Where cAD is the set of active and semi-active constraints, Ak := ∇cAD(xk), zA and zD are

the variable bounds for active and semi-active bounds (respectively), and ΣD := X−1
k ZDk

.

The set of semi-active constraints are always in the region of xk that are not already active.

Determination of the semi-active set will likely be a function of dx
k−1 and/or Ψ. The goal is to

predict all the inequality constraints that have significant affect on the next Newton step, without

including too many. Over-inclusion of semi-active constraints makes the matrix factorization too

large, thus losing some the the AS benefit. However, initializing with dx
0 = ∞ basically yields IP

iterations at the beginning, where the IP method is stronger.

In summary, at poor initialization the solver will approximate the IP method for robustness,

but as the solver iterates it will approximate the AS method for convergence efficiency. In the

middle, the barrier term on the constraints will reduce the number of minor iterations required to

update the active set and the size of the matrix factorization is reduced.
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Exploration of this method includes accurately determining the active, semi-active and

inactive constraint split, how typical IP aspects (eg barrier reduction) are addressed, compatibility

with a filter method [104], and testing on applicable problems.

Higher Order Methods

The core of every nonlinear optimization iteration is determining the step size and direction.

To find optimal step size and direction, the Newton step (or a quasi-newton method) is the most

commonly used method for gradient-based optimization [222]. While good (providing quadratic

convergence near the optimal [127]), it only quadratically approximates the objective function and

linearly approximates the constraints [222]. With exponentials and trigonometric functions in the

constraints, linear approximations are insufficient.

For example, in root finding of the Equation 5.4 , the root is at x = 0. At initial conditions

of x0 =−5, Newton’s method requires almost 30 times the iterations of Halley’s method, as shown

in Table 5.1. This is because Newton’s method ignores the strong nonlinearity and far overshoots

the root, then steps slowly back down. Halley’s method detects the nonlinearity and steps more

conservatively without overshooting.

f (x) = ex−1 (5.4)

Table 5.1: 30x Improvement in Iteration Count with Halley’s Method

Newton’s Method Halley’s Method

Iterations 148 5

The Halley step (a higher-order Householder method), gives a cubic approximation of the

objective function and quadratic approximation of the constraints. While a second-order correction

(e.g. the Shamanskii method [224]) approximates non-linear constraints and objective functions

more accurately than the Newton step, the Halley step can also be expanded with the Shaman-

skii method to achieve quintic convergence as well as an even better approximation of non-linear

constraints and non-linear objective functions than the independent Halley step [125]. The fur-

ther away from the solution, the worse Newton’s method approximates non-linear constraints. In
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addition, if globalization strategies are utilized, the Maratos effect can occur in areas close to the

solution.

Literature for unconstrained optimization has shown faster convergence of higher order

methods over Newton’s method in areas close to the solution with a globalization strategy im-

plemented. [127]. A newton-step correction similar to a second order correction was extended

from smooth convex applications to non-convex nonlinear optimization in [128]. The extension

of the newton-step achieved optimal convergence for convex problems and improved the best rate

of convergence for non-convex problems. Another iterative method called the predictor-corrector

method was applied to Halley’s method in [129] to improve convergence rate.

Many NLP algorithms use a Second Order Correction (SOC) to improve the proposed step.

In a common SOC, the Shamanskii method, ak is the proposed Newton Step calculated by Equation

5.5 and sk is the SOC correction from Equation 5.6, so the new step is ak + sk.

f ′(xk)ak =− f (xk) (5.5)

f ′(xk)sk =− f (xk +ak) (5.6)

This method is commonly used because it uses the same matrix factorization for f ′(x). This

is beneficial since the matrix factorization is the most expensive part of the linear algebra.

Cuyt and Rall [225] present a similarly efficient numerical implementation for the multi-

variate Halley step. Rather than a SOC sk, this method calculates a Halley correction bk in Equation

5.7 and the proposed step becomes xk + ck, where ck is calculated in Equation 5.8.

f ′(xk)bk = f ′′(xk)akak (5.7)

ck =
a2

k

ak +
1
2bk

(5.8)

In Equations 5.7-5.8, multiplication and division of the vectors is component-wise and the

tensor multiplication is

Bx =
n

∑
k=1

bi jkxk

for a vector x ∈ Rn and B ∈ Rn×n×n.
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This implementation also uses the same matrix factorization for f ′(x). Similar to SOC

criteria, this implementation does not necessitate calculation of the Halley correction if the Newton

step is sufficient (ie QP).

One drawback to higher order methods is the expensive of calculating higher-order deriva-

tives. A high order convergent iterative scheme not requiring second derivative information by

using numerical methods has been proposed in [130, 131]. Alternatively, advancements to AMLs

could facilitate higher-order derivatives.
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APPENDIX A. COMBINED SCHEDULING AND CONTROL EXAMPLE

The following APMonitor model and Python script detail the variables, equations, and

commands necessary to reproduce the combined scheduling and control presented in Section

3.4.1.

Listing A.1: Constants and Parameters

1 Constants

2 n = 3 % p r o d u c t s

3

4 Parameters

5 % t r a n s i t i o n p o i n t s f o r s t e p s

6 b [ 1 ] = 0

7 b [ 2 ] = 1

8 b [ 3 ] = 2

9 b [ 4 ] = 3

10 b [ 5 ] = 4

11 b [ 6 ] = 5

12 % s t e p up ( + ) o r down (−)

13 sg [ 1 ] = 1

14 sg [ 2 ] = −1

15 sg [ 3 ] = 1

16 sg [ 4 ] = −1

17 sg [ 5 ] = 1

18 sg [ 6 ] = −1

19 % magni tude o f s t e p f u n c t i o n

20 m [ 1 ] = 1

21 m [ 2 ] = 1

22 m [ 3 ] = 2

23 m [ 4 ] = 2

24 m [ 5 ] = 3

25 m [ 6 ] = 3

26 % demand f o r each p r o d u c t

27 d [ 1 ] = 2

28 d [ 2 ] = 5

29 d [ 3 ] = 3

30 % f l o w r a t e

31 q = 2

32 % m a n i p u l a t e d v a r i a b l e

33 u = 0 . 0 >= 0 . 0 <= 8 . 0

34 % z e r o eve rywhere e x c e p t l a s t p o i n t

35 last = 0
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Listing A.2: Variables and Equations

1 Variables

2 x = 0 . 0

3 % i n d i v i d u a l s t e p f u n c t i o n s

4 w [ 1 : 2 * n ] >= 0 , <= 1

5 % s l a c k v a r i a b l e s

6 % s h o u l d be p o s i t i v e when x − b i s n e g a t i v e

7 s1 [ 1 : 2 * n ] >= 0 , <= 1000

8 % s h o u l d be p o s i t i v e when x − b i s p o s i t i v e

9 s2 [ 1 : 2 * n ] >= 0 , <= 1000

10 % p r o f i t f u n c t i o n

11 pfcn = 0 >= 0 <= 3

12 % t o t a l p r o f i t a t each t ime s t e p

13 profit

14 % which i s p r o d u c t i s b e i n g produced

15 prod [ 1 : n ] = 0

16 % i n t e g r a l o f p r o d u c t

17 iprod [ 1 : n ] = 0

18

19 Intermediates

20 % sum s t e p s

21 z [ 0 ] = 0

22 z [ 1 : 2 * n ] = z [ 0 : 2 * n−1] + sg [ 1 : 2 * n ] * m [ 1 : 2 * n ] * w [ 1 : 2 * n ]

23

24 Equations

25 pfcn = z [2*n ]

26 profit = pfcn * q

27 d ( x ) / dt = −x + u

28 prod [ 1 ] = w [ 1 ] − w [ 2 ]

29 prod [ 2 ] = w [ 3 ] − w [ 4 ]

30 prod [ 3 ] = w [ 5 ] − w [ 6 ]

31 d ( iprod [ 1 : n ] ) / dt = prod [ 1 : n ] * q

32 x − b [ 1 : 2 * n ] = s2 [ 1 : 2 * n ] − s1 [ 1 : 2 * n ]

33 last * ( iprod [ 1 : n ] − d [ 1 : n ] ) >= 0

34 % i n c l u d e as a l t e r n a t i v e t o o b j e c t i v e v e r s i o n

35 %s1 [ 1 : 2 * n ] * (w[ 1 : 2 * n ] ) <= 0

36 %s2 [ 1 : 2 * n ]*(1−w[ 1 : 2 * n ] ) <= 0

37 minimize 10000 * s1 [ 1 : 2 * n ] * ( w [ 1 : 2 * n ] )

38 minimize 10000 * s2 [ 1 : 2 * n ]*(1−w [ 1 : 2 * n ] )

39 maximize profit

The application uses two elements including the model file (schedule.apm), shown in List-

ings A.1 and A.2, and a data file (schedule.csv). The data file is a list of times between 0 and 7

with time increment 0.1 and another column labeled last that is 0 everywhere except the end point

as 1. The parameter last is to enforce the constraints that a certain amount of each product should

be produced. The model is loaded and other options are set through the python script shown in

Listing A.3. All source files are available from https://github.com/APMonitor.
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Listing A.3: Python Script for Combined Control and Scheduling

from apm i m p o r t *

s = ' h t t p : / / byu . a p m o n i t o r . com '

a = ' p r o d u c t s '

# s e t up problem

apm (s , a , ' c l e a r a l l ' )

apm_load (s , a , ' s c h e d u l e . apm ' )

csv_load (s , a , ' s c h e d u l e . c sv ' )

# c r e a t e m a n i p u l a t e d v a r i a b l e

apm_info (s , a , 'MV ' , ' u ' )

apm_option (s , a , ' u . s t a t u s ' , 1 )

apm_option (s , a , ' u . d c o s t ' , 1 . 0 )

apm_option (s , a , ' u . dmax ' , 0 . 1 6 )

apm_option (s , a , ' u . uppe r ' , 8 . 0 )

apm_option (s , a , ' u . l ower ' , 0 . 0 )

# s e t o p t i o n s

apm_option (s , a , ' n l c . imode ' , 6 )

apm_option (s , a , ' n l c . m a x i t e r ' , 2 0 0 )

apm_option (s , a , ' n l c . s o l v e r ' , 3 )

apm_option (s , a , ' n l c . nodes ' , 2 )

# s o l v e combined s c h e d u l i n g and c o n t r o l

output = apm (s , a , ' s o l v e ' )

p r i n t ( output )

# r e t r i e v e s o l u t i o n

sol = apm_sol (s , a )
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APPENDIX B. FEEDBACK LINEARIZATION ESTIMATION: DERIVATION

A linear system y = f (x,u) has the property that f (x,u0 + u1) = f (x,u0)+ f (x,u1). This

means that the response of the system to the initial input u0 can be decoupled from that of the step

size u1. Using this formulation, a closed-form solution for the transition time given a step size can

be estimated to avoid preprocessing time and space.

According previous research [219], any system of the form

ẋ = f (x)+g(x)u

y = h(x)
(B.1)

can be feedback linearized. In the present example, this means (substituting CA = x1, T = x2, and

Tc = u in Eqs. 2.10-2.11)

dx1

dt
= 5−5x1−1.8 ·1010x1e−8750/x2

dx2

dt
= 1750−5.52x2 +3.77 ·1012x1e−8750/x2 +0.523u

(B.2)

f (x) =







5−5x1−1.8 ·1010x1e−8750/x2

1750−5.52x2 +3.77 ·1012x1e−8750/x2






,

g(x) =







0

0.523






,h(x) = x1

(B.3)

To linearize the output y in terms of an input v that shapes u, an input-output representation

of the system is found by taking the 1st and then 2nd time derivative of y.

146



www.manaraa.com

ẏ =
dh

dt
=

∂h

∂x

dx

dt

=
∂h

∂x
( f (x)+g(x)u)

=
∂h

∂x
f (x)

(B.4)

since ∂h
∂x

= [1 0] and g(x) = [0 0.523]T , and therefore ∂h
∂x

g(x) = 0. Leveraging (B.4), ÿ can now be

solved for:

ÿ =
d

dt
ẏ =

d

dt

∂h

∂x
f (x)

=
∂h

∂x

d f

dt
=

∂h

∂x

∂ f

∂x

dx

dt

=
∂h

∂x

∂ f

∂x
( f (x)+g(x)u)

= L2
f h(x)+LgL f h(x)

(B.5)

where L f h(x) = ∂h
∂x

f (x) is known as the Lie derivative of h with respect to f , and L2
f h(x) =

L f L f h(x). Solving equation (B.5) for u yields:

u =
1

LgL f h(x)

(

−L2
f h(x)+ ÿ

)

(B.6)

Therefore, letting v = ÿ the system can be structured as in Figure B.1, where

K1 : w =−L2
f h(x)

K2 : u =
v

LgL f h(x)

(B.7)

Since v= ÿ, the input-output behavior of the closed-loop system inside the dotted box is the

same as a double integrator, and is thus a linear system. According to Khailil et al. (1996) [219],

the new state vector z for this system is given by:
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Figure B.1: Feedback linearized system block diagram.

z =







h(x)

L f h(x)






=







x1

5−5x1−1.8 ·1010x1e−8750/x2






(B.8)

With 2 poles on the imaginary axis, the linearized system is marginally stable. In order

to compensate for this, a stabilizing controller is needed. One such controller is given by the

following transfer function

K3(s) = 27.193
50s+100

s+50
(B.9)

and used in feedback with the standard servo architecture shown in Figure 4.7. Using this configu-

ration, the transition times can be calculated by simply knowing the difference between the starting

and end values, or the step size in r. This is a key advantage to linearizing the system in this way.

Without a linearized system, a large number of transition times would need to be known a priori

in order to give the scheduler a comprehensive list. A linearized system only needs to know the

increase or decrease of the step response to compensate for the transition time, regardless of the

current state.

In order to give the scheduler a complete list of transition times, a function approximation

with respect to step size is created. Figure B.2 shows such an approximation. The transition time

is determined through simulation for a set of step sizes and then fit to a logarithmic function. The

result is the following:
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Figure B.2: Actual transition times compared to the log function approximation. The approxima-

tion works exceptionally well.

ttrans = 0.9853 · log(sstep)+5.332 (B.10)

where ttrans is the transition time and sstep is the step size, or difference between starting and ending

values. Note here that the transition time is the time for y to settle to within 0.005 of the steady

state value.

Thus by linearizing the CSTR system, transition times can be found using Equation (B.10).

These transition times can then be used by the continuous-time scheduler to create an optimal

schedule for initialization.
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